固体力学与飞行器总体设计

缝合复合材料T型接头拉伸载荷下的有限元数值模拟

  • 文立伟 ,
  • 余坤 ,
  • 宦华松
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016

收稿日期: 2020-05-15

  修回日期: 2020-06-16

  网络出版日期: 2020-08-31

基金资助

国防基础科研计划(JCKY2019204A001);上海航天科技创新基金(SAST2019-117)

Finite element numerical simulation of stitched composite T-joint under tensile load

  • WEN Liwei ,
  • YU Kun ,
  • HUAN Huasong
Expand
  • College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-05-15

  Revised date: 2020-06-16

  Online published: 2020-08-31

Supported by

Defense Industrial Technology Development Program (JCKY2019204A001);Shanghai Aerospace Science and Technology Innovation Foundation(SAST2019-117)

摘要

利用ABAQUS软件对拉伸载荷下的缝合T型接头进行建模与分析,采用基于内聚力模型(CZM)的黏聚接触方法来模拟筋条与蒙皮的脱粘行为,以基于细观力学的非线性弹簧模拟缝线在上下界面的增强作用。在模型基础上对缝线直径进行参数化分析,研究其对T型接头拉伸性能的影响。结果表明:随缝线直径增大,接头极限破坏载荷提高,即拉伸承载能力提高。有限元分析结果与试验值吻合较好。值得注意的是,当缝线直径增大到1 500旦尼尔时,模拟结果与试验数据存在10.4%的误差,这是因为模型未考虑缝合对层合板面内性能的影响,忽略了缝线可能造成的材料损伤。考虑到T型接头在拉伸载荷作用下的破坏模式主要是I型和Ⅱ型破坏,因此宜采用二维有限元模型进行参数化分析,计算效率高并且与试验结果吻合较好。

本文引用格式

文立伟 , 余坤 , 宦华松 . 缝合复合材料T型接头拉伸载荷下的有限元数值模拟[J]. 航空学报, 2021 , 42(2) : 224231 -224231 . DOI: 10.7527/S1000-6893.2020.24231

Abstract

Software ABAQUS is used to model and analyze the stitched T-joint under tensile load. The cohesive contact method based on the Cohesive Zone Model (CZM) is adopted to simulate the debonding behavior of the stiffener flange and skin. The reinforcement effect of stitching at the interface is simulated with the nonlinear spring element based on mesomechanics. On the basis of finite element model, the influence of stitching on tensile properties of the T-joint is studied by parametric analysis. Results show that the ultimate failure load increases with the increase of the thread diameter. That is, the tensile bearing capacity improves. The analysis results of the finite element method are in good agreement with the experimental values. It is worth noting that there is a 10.4% deviation between the simulation results and the experimental values when the thread diameter increases to 1 500 denier, because the model does not consider the effect of stitching on the in-plane performance and ignores the possible damage caused by stitching. Since the failure modes of the T-joint under tensile load are mainly Type I and Type Ⅱ failures, it is advisable to use two-dimensional finite element model for parametric analysis for its high calculation efficiency and good agreement with the test results.

参考文献

[1] 李陵, 徐峰, 郑绍文. 复合材料T型接头力学性能分析及优化研究[J]. 玻璃钢/复合材料, 2015(4):41-46. LI L, XU F, ZHENG S W. Research and analysis on the mechanical properties and optimization for composite T-joint[J]. Fiber Reinforced Plastics/Composites, 2015(4):41-46(in Chinese).
[2] BORTOLUZZI D B, GOMES G F, HIRAYAMA D, et al. Development of a 3D reinforcement by tufting in carbon fiber/epoxy composites[J]. The International Journal of Advanced Manufacturing Technology, 2019,100(5/8):1593-1605.
[3] BIGAUD J, ABOURA Z, MARTINS A T, et al. Analysis of the mechanical behavior of composite T-joints reinforced by one side stitching[J]. Composite Structures, 2018, 184:249-255.
[4] 程小全, 赵龙, 张怡宁. 缝合复合材料可用性——简单层合板的基本性能[J]. 北京航空航天大学学报, 2003,29(11):1001-1005. CHENG X Q, ZHAO L, ZHANG Y N. Properties of stitched composite laminates——the principle properties of simple laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003,29(11):1001-1005(in Chinese).
[5] 燕瑛, 韩凤宇, 杨东升, 等. 缝合复合材料弹性性能的三维有限元细观分析与试验验证[J]. 航空学报, 2004,25(3):267-269. YAN Y, HAN F Y, YANG D S, et al. Finite element micromechanical analysis and experimental confirmation of the elastic properties of stitched composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2004,25(3):267-269(in Chinese).
[6] MIGNERY L A, TAN T M, SUN C T. The use of stitching to suppress delamination in laminated composites[C]//ASTM STP. West Conshohocken:ASTM International, 1985:371-385.
[7] VELMURUGAN R, SOLAIMURUGAN S. Influence of in-plane fibre orientation on mode I interlaminar fracture toughness of stitched glass/polyester composites[J]. Composites Science and Technology, 2008, 68(7):1742-1752.
[8] 朱华东, 矫桂琼, 杨宝宁. 缝合复合材料Ⅱ型层间断裂韧性研究[J]. 复合材料学报, 2001, 18(2):85-89. ZHU H D, JIAO G Q, YANG B N. Investigation into the effect of stitching in CFRP on mode Ⅱ delamination toughness[J]. Acta Materiae Compositae Sinica, 2001, 18(2):85-89(in Chinese).
[9] 张国利, 李嘉禄, 李学明. T型壁板RFI缝合复合材料的屈曲性能[J]. 纺织学报, 2006(3):67-70. ZHANG G L, LI J L, LI X M. Buckling performance of T-shape RFI stitched composites panel[J]. Journal of Textile Research, 2006(3):67-70(in Chinese).
[10] KIM C H, JO D H, CHOI J H. Failure strength of composite T-joints prepared using a new 1-thread stitching process[J]. Composites Structures, 2017,178:225-231.
[11] 叶强, 陈普会. 复合材料粘聚区模型的强度参数预测[J]. 固体力学学报, 2012,33(6):566-573. YE Q, CHEN P H. Prediction on the strength parameters of cohesive zone model for simulation composite delamination[J]. Chinese Journal of Solid Mechanics, 2012,33(6):566-573(in Chinese).
[12] 孔斌, 陈普会, 李梦佳, 等. Z-pin/缝合对复合材料T型接头剪切承载能力的影响[J]. 复合材料学报, 2018,35(4):834-842. KONG B, CHEN P H, LI M J, et al. Effect of Z-pin/stitching on the shear carrying capacity of composite T-joints[J]. Acta Materiae Compositae Sinica, 2018,35(4):834-842(in Chinese).
[13] IWAHORI Y, NAKANE K, WATANABE N. DCB test simulation of stitched CFRP laminates using interlaminar tension test results[J]. Composites Science and Technology, 2009,69(14):2315-2322.
[14] 李梦佳, 陈普会, 孔斌, 等. Z-pin参数对复合材料T型接头拉脱承载能力的影响[J]. 复合材料学报, 2015,32(2):571-578. LI M J, CHEN P H, KONG B,et al. Effect of Z-pin parameters on pull-off carrying capacity of composite T-joints[J]. Acta Materiae Compositae Sinica, 2015, 32(2):571-578(in Chinese).
[15] GRASSI M, ZHANG X. Finite element analysis of mode I interlaminar delamination in z-fiber reinforced composite laminates[J]. Composites Science and Technology, 2003, 63(12):1815-1832.
[16] TAN K T, WATANABE N. Impact damage resistance, response, and mechanisms of laminated composites reinforced by through-thickness stitching[J]. International Journal of Damage Mechanics, 2012,21(1):51-80.
[17] 程小全, 邹健, 张纪奎,等. 缝合复合材料可用性——含孔层合板的疲劳性能[J]. 航空学报, 2009, 30(5):867-871. CHENG X Q, ZOU J, ZHANG J K,et al. Properties of stitched composite laminates——fatigue performance of composite laminates with an open-hole[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5):867-871(in Chinese).
[18] 尹昌平, 李建伟, 刘钧, 等. 缝合/RTM复合材料层合板的力学性能研究[J]. 材料导报, 2007, 21(11):136-138. YIN C P, LI J W, LIU J, et al. Research on mechanical properties of stitched/RTM composite laminates[J]. Materials Reports, 2007, 21(11):136-138(in Chinese).
[19] 盛仪, 熊克, 卞侃, 等. 拉伸状态下碳纤维复合材料T型接头的断裂行为[J].复合材料学报, 2013,30(6):185-190. SHENG Y, XIONG K, BIAN K. Fracture behavior of carbon fiber T-joints under tensile load[J]. Acta Materiae Compositae Sinica, 2013,30(6):185-190(in Chinese).
[20] TURON A, DÀVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2007, 74(10):1665-1682.
[21] BIANCHI F, KOH T M, ZHANG X, et al. Finite element modelling of z-pinned composite T-joints[J]. Composites Science and Technology, 2012, 73:48-56.
[22] HUAN D J, LI Y, TAN Y, et al. On the assessment of the load-bearing capacity of Z-pinned composite T-joint under out-of-plane tension[J]. Journal of Reinforced Plastics and Composites, 2017, 36(22):1639-1650.
[23] LI M J, CHEN P H, LI X P, et al. Experimental and numerical study on the tensile properties of T-joints with low Z-pin volume density[J]. Polymer Composites, 2020, 41(1):258-270.
文章导航

/