固体力学与飞行器总体设计

基于逆向有限元法的变形机翼鱼骨的变形重构

  • 张科 ,
  • 袁慎芳 ,
  • 任元强 ,
  • 徐跃胜
展开
  • 南京航空航天大学 机械结构力学及控制国家重点实验室 结构健康监测及预测研究中心, 南京 210016

收稿日期: 2019-10-30

  修回日期: 2019-12-02

  网络出版日期: 2020-08-26

基金资助

国家自然科学基金(51635007,51635008);国家自然基金创新研究群体项目(51921003);江苏省重点研发计划(BE2018123);江苏高校优势学科建设工程资助项目

Shape reconstruction of self-adaptive morphing wings’ fishbone based on inverse finite element method

  • ZHANG Ke ,
  • YUAN Shenfang ,
  • REN Yuanqiang ,
  • XU Yuesheng
Expand
  • Research Center of Structure Health Monitoring and Prognosis, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-10-30

  Revised date: 2019-12-02

  Online published: 2020-08-26

Supported by

National Natural Science Foundation of China (51635007,51635008); Innovative Research Groups of National Natural Science Foundation of China (51921003); Primary Research and Development Plan of Jiangsu Province (BE2018123); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

变形监测技术能够为自适应变形机翼的变形控制系统提供参考信息,是保证结构安全性以及优化结构的运行性能的重要手段。传统的基于光学成像的变形测量方法已经不能满足自适应智能结构的实时变形监测的要求。由于变形机翼表面受气动载荷影响,不便于直接在变形机翼蒙皮表面布置应变传感系统,目前还没有针对鱼骨结构这种真实复杂机翼结构的变形重构研究,大多针对机翼翼型的变形重构研究是将整个机翼简化成简单的翼形板、梁结构。针对上述问题,本文首次以真实复杂变形机翼主承力结构——鱼骨为研究对象,提出了一种基于逆向有限元(iFEM)算法与位移分段叠加思想结合的变形监测方法,根据Mindlin板变形理论建立四节点逆向壳单元,采用应变传感系统测得鱼骨结构表面应变分布作为算法输入,然后基于最小二乘变分方程求解结构应变场和位移场之间的传递函数,重构鱼骨结构的变形形状,为反演机翼翼型的变形形状提供方法。针对真实自适应变形机翼的主要承力构件开展了变形实验,实验结果表明,机翼鱼骨在分别偏转5°、10°、15°的情况下,逆向有限元法能准确重构鱼骨变形形状,验证了基于逆向有限元法的变形重构方法在真实自适应变形机翼结构变形重构研究中的有效性和准确性。

本文引用格式

张科 , 袁慎芳 , 任元强 , 徐跃胜 . 基于逆向有限元法的变形机翼鱼骨的变形重构[J]. 航空学报, 2020 , 41(8) : 223617 -223617 . DOI: 10.7527/S1000-6893.2019.23617

Abstract

Benefiting from the ability of providing reference information for deformation-control system, shape sensing technology is considered as an important way to guarantee the safety and improve the operational performance of self-adaptive morphing structures. However, the conventional optical imaging based shape sensing technologies are unable to meet the need of real-time shape sensing of self-adaptive morphing structures. In this paper, a shape sensing technology based on the inverse Finite Element Method (iFEM) and the idea of superposing segmented displacement is proposed to reconstruct the deformation of morphing wing’s major load-bearing structure of fishbone. Firstly, a four-node quadrilateral inverse-shell element is developed based on Mindlin deformation theory for the major load-bearing structure of the morphing wing. Secondly, strain sensors are used to obtain strain distribution of the structure surface as the input of the proposed method. Then the transfer function between the strain field and the displacement field can be obtained by adopting the least square variational equation. Finally, the corresponding displacement of the major load-bearing structure is reconstructed, based on which the reconstruction of wing deformation can be realized. The proposed method is verified through experiments performed on the major load-bearing structure of a morphing wing. The results show that under the deflection angles of 5°, 10°, and 15° of the morphing wing, the reconstructive displacements have a strong consistency with measured displacements, which verifies the feasibility and accuracy of the proposed method.

参考文献

[1] CHOPRA I. Review of state of art of smart structures and integrated systems[J]. AIAA Journal, 2012, 40(11):2145-2187.
[2] YIN W, FU T, LIU J, et al. Structural shape sensing for variable camber wing using FBG sensors[J]. Journal of Mechanics of Materials and Structures, 2010, 5(2):341-367.
[3] 陆宇平, 何真. 变体飞行器控制系统综述[J]. 航空学报, 2009,30(10):1906-1911. LU Y P, HE Z. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009,30(10):1906-1911(in Chinese).
[4] YI J, ZHU X, ZHANG H, et al. Spatial shape reconstruction using orthogonal fiber Bragg grating sensor array[J]. Mechatronics, 2012, 22(6):679-687.
[5] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2013, 35(1):29-45. LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(1):29-45(in Chinese).
[6] 袁慎芳, 闫美佳, 张巾巾,等. 一种适用于梁式机翼的变形重构方法[J]. 南京航空航天大学学报, 2014, 46(6):825-830. YUAN S F, YAN M J, ZHANG J J, et al. Shape reconstruction method of spar wing structure[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(6):825-830(in Chinese).
[7] KO W L, JACKSON R H. Multilayer theory for delamination analysis of a composite curved bar subjected to end forces and end moments[J]. Composite Structures, 1989, 19:173-198.
[8] WANG Z, WANG J, SUI Q, et al. Deformation reconstruction of a smart Geogrid embedded with fiber Bragg grating sensors[J]. Measurement Science and Technology, 2015, 26(12):125202.
[9] FOSS G C, HAUGSE E D. Using modal test results to develop strain to displacement transformations[J]. Aerospace Science and Technology, 2007, 10:16-29.
[10] TESSLER A, SPANGLER J. An inverse finite element method for application to structural health monitoring[J] Journal of Composite Materials, 2009, 43(9):1051-1081.
[11] KEFAL A, OTERKUS E. Displacement and stress monitoring of a Panamax containership using inverse finite element method[J]. Ocean Engineering, 2016, 119:16-29.
[12] KEFAL A, OTERKUS E. Displacement and stress monitoring of a chemical tanker based on inverse finite element method[J]. Ocean Engineering, 2016, 112:33-46.
[13] GHERLONE M, CERRACCHIO P, MATTONE M, et al. Shape sensing of 3D frame structures using an inverse finite element method[J]. International Journal of Solids and Structures, 2012, 49(22):3100-3112.
[14] ALBANESI A, BRE F, FACHINOTTI V, et al. Simultaneous ply-order, ply-number and ply-drop optimization of laminate wind turbine blades using the inverse finite element method[J]. Composite Structures, 2018, 184:894-903.
[15] KEFAL A, YILDIZ M. Modeling of sensor placement strategy for shape sensing and structural health monitoring of a wing-shaped sandwich panel using inverse finite element method[J]. Sensors, 2017, 17(12):2775.
[16] PAPA U, RUSSO S, LAMBOGLIA A, et al. Health structure monitoring for the design of an innovative UAS fixed wing through inverse Finite Element Method (iFEM)[J]. Aerospace Science and Technology, 2017, 69:439-448.
[17] KIM H, HAN J, BANG H. Real-time deformed shape estimation of a wind turbine blade using distributed fiber Bragg grating sensors[J]. Wind Energy, 2014, 17(9):1455-1467.
[18] KEFAL A, OTERKUS E. Displacement and stress monitoring of a chemical tanker based on inverse finite element method[J]. Ocean Engineering, 2016, 112:33-46.
[19] KEFAL A, YILDIZ M. Modeling of sensor placement strategy for shape sensing and structural health monitoring of a wing-shaped sandwich panel using inverse finite element method[J]. Sensors, 2017, 17(12):2775-2786.
[20] LIU M, WANG L, YUN K, et al. Study on the deformation measurement and reconstruction of heavy-duty machine column based on FBG sensor[J]. Smart Structures and Materials, 2013, 10(2):88-100.
[21] GHERLONE M, CERRACCHIO P, MATTONE M. Shape sensing methods:Review and experimental comparison on a wing-shaped plate[J]. Progress in Aerospace Sciences, 2018, 99:56-63.
[22] LI L, ZHONG B S, LI W Q, et al. Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method[J]. Journal of Intelligent Material Systems and Structures, 2017, 5(12):104-125.
[23] MIELOSZYK M, SKARBEK L, KRAWCZUK M, et al. Application of fibre Bragg grating sensors for structural health monitoring of an adaptive wing[J]. Smart Materials & Structures, 2011, 20(12):125-144.
文章导航

/