电子电气工程与控制

面向城市飞行安全的无人机离散型多路径规划方法

  • 胡莘婷 ,
  • 吴宇
展开
  • 1. 中国民航大学 空中交通管理学院, 天津 300300;
    2. 重庆大学 航空航天学院, 重庆 400044

收稿日期: 2020-06-09

  修回日期: 2020-07-27

  网络出版日期: 2020-08-21

基金资助

重庆市自然科学基金(cstc2020jcyj-msxmX0602);中央高校基本科研业务费(2020 CDJ-LHZZ-066)

Risk-based discrete multi-path planning method for UAVs in urban environments

  • HU Xinting ,
  • WU Yu
Expand
  • 1. School of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China;
    2. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China

Received date: 2020-06-09

  Revised date: 2020-07-27

  Online published: 2020-08-21

Supported by

Chongqing Research Program of Basic Research and Frontier Technology (cstc2020jcyj-msxmX0602); Fundamental Research Funds for the Central Universities (2020 CDJ-LHZZ-066)

摘要

为了提高无人机(UAV)在城市环境中运行的安全性,且能生成多条备选路径,提出一种离散型城市环境下基于无人机飞行安全的多路径规划方法。根据定义的城市环境模型、无人机的飞行规则和安全性原则,建立无人机飞行安全性分析模型和离散型多路径规划问题的数学模型。为提高算法的收敛速度和解的优质性,以及使算法能够同时输出多条路径,针对蚁群(ACO)算法的运行机制,设计聚类算子,提出改进聚类蚁群(CIACO)算法。实验结果表明,所提方法能够快速的收敛输出多条风险值较低的飞行路径。

本文引用格式

胡莘婷 , 吴宇 . 面向城市飞行安全的无人机离散型多路径规划方法[J]. 航空学报, 2021 , 42(6) : 324383 -324383 . DOI: 10.7527/S1000-6893.2020.24383

Abstract

A risk-based Unmanned Aerial Vehicle (UAV) multi-path planning method is proposed to improve the safety of UAV operations and generate multiple alternative flight paths in discrete urban environments. According to the proposed model of urban environments, flight rules, and principles of safety, a safety analysis model and a multi-path planning model are established respectively. A Clustering Improved Ant Colony Optimization (CIACO) algorithm is employed to enhance algorithm performance on convergence rate and solution quality. In this algorithm, the multi-path planning problem is solved by designing a cluster mechanism and improving original Ant Colony Optimization (ACO) algorithm. Simulation studies show that the proposed method can generate multiple flight paths with low risks at fast convergence rates.

参考文献

[1] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议综述[J]. 航空学报, 2020, 41(1):023238. QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management:An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023238(in Chinese).
[2] THIEL C, SCHMULLIUS C. Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective[J]. International Journal of Remote Sensing, 2017, 38(8-10):2411-2426.
[3] QI F, ZHU X T, MANG G, et al. UAV network and IoT in the sky for future smart cities[J]. IEEE Network, 2019, 33(2):96-101.
[4] 中国民用航空局航空器适航审定司. 基于运行风险的无人机适航审定指导意见[EB/OL]. (2019-01-25)[2020-04-16]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201901/t20190125_194383.html. Department of Aircraft Airworthiness Certification, Civil Aviation Administration of China. The guidelines on operation risk based UAV airworthiness certification[EB/OL]. (2019-01-25)[2020-04-16]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201901/t20190125_194383.html (in Chinese).
[5] HU H J, WU Y, XU J F, et al. Cuckoo search-based method for trajectory planning of quadrotor in an urban environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(12):4571-4582.
[6] 李俨, 王重, 齐延军, 等. 城市风场环境中的无人机快速航迹规划方法[J]. 航空学报, 2016, 37(3):949-959. LI Y, WANG Z, QI Y J, et al. A rapid trajectory planning algorithm for UAV in urban areas with wind fields[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):949-959(in Chinese).
[7] 张启瑞, 魏瑞轩, 何仁珂, 等. 城市密集不规则障碍空间无人机航路规划[J]. 控制理论与应用, 2015, 32(10):1407-1413. ZHANG Q R, WEI R X, HE R K, et al. Path planning for unmanned aerial vehicle in urban space crowded with irregular obstacles[J]. Control Theory & Applications, 2015, 32(10):1407-1413(in Chinese).
[8] RAMANA M V, VARMA S A, KOTHARI M. Motion planning for a fixed-wing UAV in urban environments[J]. IFAC-PapersOnline, 2016, 49(1):419-424.
[9] PRIMATESTA S, GUGLIERI G, RIZZO A. A risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):629-643.
[10] PRIMATESTA S, RIZZO A, COUR-HARBO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, 2020,97(3-4):489-509.
[11] WU P P-Y, CAMPBELL D, MERZ T. Multi-objective four-dimensional vehicle motion planning in large dynamic environments[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(3):621-634.
[12] 郑昌文, 严平, 丁明跃, 等.飞行器航迹规划研究现状与趋势[J]. 宇航学报, 2007,28(6):1441-1446. ZHENG C W, YAN P, DING M Y, et al. Research status and trend of route planning for flight vehicles[J]. Journal of Astronautics, 2007,28(6):1441-1446(in Chinese).
[13] 李猛, 王道波, 盛守照, 等. 基于加权K-均值聚类与粒子群优化的多航迹规划[J]. 系统工程与电子技术, 2012, 34(3):512-516. LI M, WANG D B, SHENG S Z, et al. Multiple route planning based on particle swarm optimization and weighted K-means clustering[J]. System Engineering and Electronics, 2012,34(3):512-516(in Chinese).
[14] 李枭扬, 周德云, 冯琦. 基于分级规划策略的A*算法多航迹规划[J]. 系统工程与电子技术, 2015, 37(2):318-322. LI X Y, ZHOU D Y, FENG Q. Multiple route planning for A* algorithm based on hierarchical planning[J]. Systems Engineering and Electronics, 2015,37(2):318-322(in Chinese).
[15] 张泽京, 张曙光, 柳旭, 等. 无人机系统安全目标水平预估方法[J]. 航空动力学报, 2018, 33(4):1017-1024. ZHANG Z J, ZHANG S G, LIU X, et al. Estimated method of target level of safety for unmanned aircraft system[J]. Journal of Aerospace Power, 2018, 33(4):1017-1024(in Chinese).
[16] 丁水汀, 鲍梦瑶, 杜发荣. 无人机系统适航与安全性分析方法[J]. 航空动力学报, 2012, 27(1):233-240. DING S T, BAO M Y, DU F R. Safety research on unmanned aircraft system for airworthiness[J]. Journal of Aerospace Power, 2012,27(1):233-240(in Chinese).
[17] CLOTHIER R, WALKER R, FULTON N. A casualty risk analysis for unmanned aerial system (UAS) operations over inhabited areas[C]//Proceedings of AIAC12:2nd Australasian Unmanned Air Vehicles Conference, 2007:1-16.
[18] KOH C H, LOW K H, LI L, et al. Weight threshold estimation of falling UAVs (Unmanned Aerial Vehicles) based on impact energy[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:228-255.
[19] DALAMAGKIDIS K, VALAVANIS K P, PIEGL L A. Evaluating the risk of unmanned aircraft ground impacts[C]//200816th Mediterranean Conference on Control and Automation. Piscataway:IEEE Press, 2008:709-716.
[20] TAN Q Y, WANG Z K, ONG Y S, et al. Evolutionary optimization-based mission planning for UAS traffic management (UTM)[C]//2019 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway:IEEE Press, 2019.
[21] 闫少琨. 无人机运行安全风险评价[D]. 天津:中国民航大学, 2018. YAN S K. Evaluating the risk of unmanned aircraft operation[D]. Tianjin:Civil Aviation University of China, 2018(in Chinese).
文章导航

/