流体力学与飞行力学

HyTRV流场特征与边界层稳定性特征分析

  • 陈坚强 ,
  • 涂国华 ,
  • 万兵兵 ,
  • 袁先旭 ,
  • 杨强 ,
  • 庄宇 ,
  • 向星皓
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    3. 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000

收稿日期: 2020-05-29

  修回日期: 2020-07-27

  网络出版日期: 2020-08-17

基金资助

国家重点研发计划(2016YFA0401200);国家自然科学基金(11772350);国家数值风洞工程

Characteristics of flow field and boundary-layer stability of HyTRV

  • CHEN Jianqiang ,
  • TU Guohua ,
  • WAN Bingbing ,
  • YUAN Xianxu ,
  • YANG Qiang ,
  • ZHUANG Yu ,
  • XIANG Xinghao
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-05-29

  Revised date: 2020-07-27

  Online published: 2020-08-17

Supported by

National Key Research and Development Program of China (2016YFA0401200); National Natural Science Foundation of China (11772350); National Numerical Wind Tunnel Project

摘要

高超声速转捩研究飞行器(HyTRV)是为研究三维复杂外形的边界层转捩问题而设计的一款具备真实飞行器典型特征的升力体标模。为支撑更加全面系统的理论分析、数值模拟、风洞试验和飞行试验研究,采用高精度数值模拟方法、线性稳定性理论(LST)和eN方法对HyTRV标模的典型流动特征和边界层失稳特征进行了分析。研究表明,HyTRV展现出多个相对独立的横流区域和多个流向涡结构;HyTRV的边界层存在横流失稳模态、第二模态、附着线失稳模态等常见模态。横流失稳模态出现在周向高低压区之间的横流区域,能够主导转捩发生;横流区域同时也存在第二模态,其N值普遍比横流失稳模态小;附着线失稳模态呈现出第二模态特性,且频率非常高。还研究了攻角和单位雷诺数的影响。结果表明,随着攻角增加,标模下表面中心线的流向涡结构逐渐消失,横流雷诺数逐渐减小;上表面流向涡结构逐渐从腰部移向顶端,并出现新的流向涡结构。增加攻角,所有失稳模态的N值总体上逐渐减小;增加单位雷诺数,N值显著增加。基于研究结果,针对流向涡失稳、横流失稳、第二模态和附着线失稳等给出了研究建议。

本文引用格式

陈坚强 , 涂国华 , 万兵兵 , 袁先旭 , 杨强 , 庄宇 , 向星皓 . HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021 , 42(6) : 124317 -124317 . DOI: 10.7527/S1000-6893.2020.24317

Abstract

The Hypersonic Transition Research Vehicle (HyTRV) is a lifting body model with typical characteristics of a real aircraft designed for the study of boundary-layer transition on three-dimensional complex geometries. To support a more comprehensive and systematic study of hypersonic transition by means of theoretical analysis, numerical simulations, wind tunnel experiments and flight tests, the typical characteristics of the flow and the boundary-layer instability of the HyTRV model are analyzed with high-order numerical simulation, the Linear Stability Theory (LST) and the eN method. Results show that the HyTRV exhibits several relatively independent crossflow regions and streamwise vortices. The boundary layer of the HyTRV has common typical instability modes such as the crossflow mode, the second mode and the attachment line mode. The crossflow instability mode, which can lead to transition, appears in the crossflow region between the high- and low-pressure zones in the circumferential direction. Meanwhile, the second mode is also found in the crossflow region, though its N factor is generally smaller than that of the crossflow instability mode. The attachment line instability mode essentially belongs to the second mode, with a high frequency. The effects of the angle of attack and the unit Reynolds number on the boundary layer transition are also studied. The results show that with the increase of the angle of attack, the streamwise vortex structure along the centerline on the lower surface gradually disappears, and the crossflow Reynolds number gradually decreases; the original streamwise vortices on the upper surface gradually move from the side to the top and new streamwise vortices also appear. The N factors of all instability modes in general decrease gradually with the increase of the angle of attack, and increase significantly with the increase of the unit Reynolds number. Based on these results, advice on the typical instabilities including the streamwise vortex instability, the crossflow instability, the second mode and the attachment line instability are given.

参考文献

[1] Defense Science Board. Final report of the second defense science board task on the national aero-space plane (NASP):AD-A274530, 1994-00052[R]. 1994.
[2] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition:What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35:311-337(in Chinese).
[3] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese).
[4] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J]. 航空学报, 2015, 36(3):714-723. XIE S F, YANG W B, SHEN Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723(in Chinese).
[5] MACK L M. Boundary layer linear stability theory:AGARD 709[R]. Paris:AGARD, 1984.
[6] STETSON K F, THOMPSON E R, DONALDSON J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Part 2:Blunt cone:AIAA-1984-0006[R]. Reston:AIAA, 1984.
[7] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95.
[8] ZHONG X, WANG X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561.
[9] BALAKUMAR P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances:AIAA-2015-2473[R]. Reston:AIAA, 2015.
[10] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8):122740. LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122740(in Chinese).
[11] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).
[12] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津:天津大学, 2016. ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layer[D]. Tianjin:Tianjin University, 2016(in Chinese).
[13] JOEL E G, HEATH B J, GRAHAM V C. Hypersonic three-dimensional boundary layer transition on a cone at angle of attack:AIAA-2011-3561[R]. Reston:AIAA, 2011.
[14] DUAN L, CHOUDHARI M M, LI F. Direct numerical simulation of transition in a swept-wing boundary layer:AIAA-2013-2617[R]. Reston:AIAA, 2013.
[15] XU G L, LIU G, JIANG X. The nonlinear instability of the supersonic crossflow vortex:AIAA-2014-2637[R]. Reston:AIAA, 2014.
[16] PARADES P, THEOFILIS V. Spatial linear global instability analysis of the HIFiRE-5 elliptic cone mode flow:AIAA-2013-2880[R]. Reston:AIAA, 2013.
[17] 李晓虎, 张绍龙, 刘建新, 等.高超声速椭圆锥短轴流向涡的二维全局稳定性分析[J].空气动力学学报, 2018, 36(2):265-272. LI X H, ZHANG S L, LIU J X, et al.Bi-Global instability of streamwise vortices near minor-axis of hypersonic elliptic cone[J].Acta Aerodynamica Sinica, 2018, 36(2):265-272(in Chinese).
[18] REN J, FU S. Secondary instabilities of Görtler vortices in high-speed boundary layer flow[J]. Journal of Fluid Mechanics, 2015, 781:388-421.
[19] XU D, ZHANG Y, WU X. Nonlinear evolution and secondary instability of steady and unsteady Görtler vortices induced by free-stream vertical disturbances[J]. Journal of Fluid Mechanics, 2017, 829:681-730.
[20] CHEN X, HUANG G L, LEE C B. Hypersonic boundary layer transition on a concave wall:stationary Gortler vortices[J]. Journal of Fluid Mechanics, 2019, 865:1-40.
[21] MACK C J, SCHMID P J. Direct numerical study of hypersonic flow about a swept parabolic body[J]. Computer and Fluid, 2010, 39:1932-1943.
[22] BORG M P, KIMMEL R L, STANFIELD S. HIFiRE-5 attachment-line and crossflow instability in a quiet hypersonic wind tunnel:AIAA-2011-3247[R]. Reston:AIAA, 2011.
[23] DOLVIN D J. Hypersonic international flight research and experimentation:AIAA-2009-7228[R]. Reston:AIAA, 2009.
[24] WHEATON B M, BERRIDGE D C, WOLF T D, et al. Boundary layer transition (BOLT) flight experiment overview:AIAA-2018-2892[R]. Reston:AIAA, 2018.
[25] 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2):286-293. YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2):286-293(in Chinese).
[26] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学:物理学力学天文学, 2019, 49:114701. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49:114701(in Chinese).
[27] 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学:物理学力学天文学, 2019, 49:124701. TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49:124701. (in Chinese).
[28] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[29] DENG X G, MAO M L, TU G H, et al. High-order and high accurate CFD methods and their applications for complex grid problems[J]. Communication in Computational Physics, 2012,11(4):1081-1102.
[30] 涂国华, 邓小刚, 毛枚良. 消除粘性项高阶离散数值振荡的半结点-结点交错方法[J].空气动力学学报, 2011, 29(1):10-15. TU G H, DENG X G, MAO M L. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J]. Acta Aerodynamica Sinica, 2011, 29(1):10-15(in Chinese).
[31] YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[32] KERVIK A, BRANDT E, HENNINGSON L, et al. Steady solutions of the Navier-Stokes equations by selective frequency damping[J]. Physics of Fluids, 2006, 18(6):068102.
[33] 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004. ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing:National Defense Industry Press, 2004(in Chinese).
[34] 张绍龙, 黄章峰, 罗纪生. 三维边界层中考虑等效展向波数的线性稳定性方法[C]//中国力学大会, 2015. ZHANG S L, HUANG Z F, LUO J S.A linear stability method considering thee quivalent spread wavenumber in the three dimensional boundary layer[C]//China Mechanics Conference, 2015(in Chinese).
[35] 黄章峰, 肖凌晨, 罗纪生. 超声速边界层转捩预测eN方法及其软件开发[J]. 空气动力学学报, 2018, 36(2):279-285. HUANG Z F, XIAO L C, LUO J S. Transition prediction eN method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica, 2018, 36(2):279-285(in Chinese).
[36] FEDOROV A V. Receptivity of high speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics, 2003, 491(491):101-129.
[37] GAO J, LUO J S, WU X S. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Acta Mechanica Sinica, 2015, 31(6):899-909.
[38] PEREDES P, GOSSE R, THEOFILIS V, et al. Linear modal instabilities of hypersonic flow over an elliptic cone[J]. Journal of Fluid Mechanics, 2016, 804:442-466.
文章导航

/