空天往返飞行器制导控制技术专栏

可重复使用运载器再入轨迹与制导控制方法综述

  • 田栢苓 ,
  • 李智禹 ,
  • 吴思元 ,
  • 宗群
展开
  • 天津大学 电气自动化与信息工程学院, 天津 300072

收稿日期: 2020-04-07

  修回日期: 2020-05-18

  网络出版日期: 2020-08-17

基金资助

国家自然科学基金(61773278,61673294,61873340,61903349);空间智能控制技术重点实验室开放基金(6142208180202,6142208190401)

Reentry trajectory optimization, guidance and control methods for reusable launch vehicles: Review

  • TIAN Bailing ,
  • LI Zhiyu ,
  • WU Siyuan ,
  • ZONG Qun
Expand
  • School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China

Received date: 2020-04-07

  Revised date: 2020-05-18

  Online published: 2020-08-17

Supported by

National Natural Science Foundation of China (61773278, 61673294, 61873340,61903349); Fund of Science and Technology on Space Intelligent Control Laboratory (6142208180202, 6142208190401)

摘要

可重复使用运载器(RLV)是未来实现快速、可靠及廉价进出空间的必然趋势,也是当前航空航天领域的研究热点。对RLV再入段的轨迹优化、制导及控制方法进行了综述。在RLV再入轨迹优化方法上,分别从间接法、直接法以及伪谱法等方面进行了综述,在深入分析每类方法特点的基础上,对其未来发展趋势进行了展望;在RLV再入制导方法上,分别从离线标称轨迹制导、在线轨迹重构制导、预测校正制导等方面进行了综述,对每类再入制导方法进行了优缺点分析,并对未来发展方向进行了总结;在RLV再入姿态控制方法上,分别从线性控制方法、非线性控制方法、智能控制方法等方面对其进行了综述,并对其特点和未来发展趋势进行了分析。最后,对RLV再入制导控制一体化方法进行了综述,指出了未来RLV制导控制一体化研究中亟需解决的关键问题。

本文引用格式

田栢苓 , 李智禹 , 吴思元 , 宗群 . 可重复使用运载器再入轨迹与制导控制方法综述[J]. 航空学报, 2020 , 41(11) : 624072 -624072 . DOI: 10.7527/S1000-6893.2020.24072

Abstract

Reusable Launch Vehicle (RLV) represent an inevitable trend to achieve fast, reliable and cheap access to space in the future, and also a research hotspot in the field of aerospace. The reentry trajectory optimization, guidance and control methods of RLVs are reviewed in this paper. The trajectory optimization methods are reviewed from the aspects of the indirect method, the direct method and the pseudospectral method. The future development trend of each method is prospected based on the depth analysis of their characteristics. The reentry guidance of RLVs is reviewed from the aspects of offline nominal trajectory guidance, online trajectory reconstruction guidance, and predictor-corrector guidance. The advantages and disadvantages of each type of reentry guidance method are analyzed, and their future development direction summarized. In terms of control methods, the reentry attitude control problems of RLVs are reviewed from the linear control methods, non-linear control methods, and intelligent control methods. Moreover, the research hotspots of future control methods are discussed. Finally, the RLV reentry integrated guidance and control method is reviewed, and the key issues that need to be resolved in the future research of integrated guidance and control are pointed out.

参考文献

[1] 史丽楠, 李惠峰, 张冉. 滑翔再入飞行器横侧向耦合姿态控制策略[J]. 北京航空航天大学学报, 2016, 42(1):120-129. SHI L N, LI H F, ZHANG R. Gliding reentry vehicle lateral/directional coupling attitude control strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016,42(1):120-129(in Chinese).
[2] 魏锟亮, 刘磊, 王永骥. 一种基于跳跃轨迹的可重复使用飞行器再入走廊预测方法[C]//中国控制会议, 2013:5029-5034. WEI K L, LIU L, WANG Y J, et al. A reentry corridor calculation method for reusable launch vehicles based on skipping trajectory[C]//Chinese Control Confernce, 2013:5029-5034(in Chinese).
[3] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913. SUN C Y, MU Z X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
[4] COBLEIGH B R. Development of the X-33 aerodynamic uncertainty model[M]. Washington, D.C.:NASA, 1998.
[5] 沈作军, 朱国栋. 基于轨迹线性化控制的再入轨迹跟踪制导[J]. 北京航空航天大学学报, 2015, 41(11):1975-1982. SHEN Z J, ZHU G D. Trajectory linearization control based tracking guidance design for entry flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1975-1982(in Chinese).
[6] 郭继峰, 傅瑜, 崔乃刚. 三维自主再入制导方法[J].控制与决策, 2013, 28(5):688-694. GUO J F, FU Y, CUI N G. Three dimensional autonomous entry guidance method[J]. Control and Decision, 2013, 28(5):688-694(in Chinese).
[7] 周浩, 陈万春, 殷兴良. 高超声速飞行器滑行航迹优化[J]. 北京航空航天大学学报, 2006, 32(5):513-517. ZHOU H, CHEN W C, YIN X L. Optimization of glide trajectory for a hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):513-517.
[8] HAWS L D, KISER T. Exploring the brachistochrone problem[J]. The American Mathematical Monthly, 1995, 102(4):328-336.
[9] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2):193-207.
[10] RAO A V. A survey of numerical methods for optimal control[J]. Advances in the Astronautical Sciences, 2009, 135(1):497-528.
[11] HULL D G. Optimal control theory for applications[M]. Berlin:Springer Science & Business Media, 2013.
[12] VON STRYK O, BULIRSCH R. Direct and indirect methods for trajectory optimization[J]. Annals of Operations Research, 1992, 37(1):357-373.
[13] VINH N X. Optimal trajectories in atmospheric flight[M]//Space mankind's fourth environment. Amsterdam:Elsevier,1982:449-468.
[14] VINH N X, BLETSOS N A, BUSEMANN A, et al. Flight with lift modulation inside a planetary atmosphere[J]. AIAA Journal, 1977, 15(11):1617-1623.
[15] BARRON R L, CHICK III C M. Trim-reference functions for indirect method of trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4):1189-1193.
[16] BARRON R L, CHICK III C M. Improved indirect method for air-vehicle trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):643-652.
[17] GIL-FERNANDEZ J, GOMEZ-TIERNO M A. Practical method for optimization of low-thrust transfers[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6):1927-1931.
[18] SENENT J, OCAMPO C, CAPELLA A. Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2):280-290.
[19] RUSSELL R P. Primer vector theory applied to global low-thrust trade studies[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):460-472.
[20] DIXON L C W, BARTHOLOMEW-BIGGS M C. Adjoint-control transformations for solving practical optimal control problems[J]. Optimal Control Applications and Methods, 1981, 2(4):365-381.
[21] BRUSCH R G, SCHAPPELLE R H. Solution of highly constrained optimal control problems using nonlinear programing[J]. AIAA Journal, 1973, 11(2):135-136.
[22] BRUSCH R G, PELTIER J P. Gradient generation for parametric control models[J]. Acta Astronautica, 1974, 1(11-12):1453-1466.
[23] HULL D. Application of parameter optimization methods to trajectory optimization[C]//Mechanics and Control of Flight Conference,1974:825.
[24] DICKMANNS E, WELL K. Parametrization of optimal control problems using piecewise polynomial approximation[C]//Mechanics and Control of Flight Conference,1974:822.
[25] BETTS J T, HUFFMAN W P. Trajectory optimization on a parallel processor[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2):431-439.
[26] LU P. Inverse dynamics approach to trajectory optimization for an aerospace plane[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4):726-732.
[27] ENRIGHT P J, CONWAY B A. Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5):981-985.
[28] BÉREND N, BONNANS J F, LAURENT-VARIN J, et al. An interior-point approach to trajectory optimization:RR-5613[R]. Paris:INRIA, 2005.
[29] LAURENT-VARIN J, BONNANS J F, BÉREND N, et al. Interior-point approach to trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1228-1238.
[30] CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods in fluid dynamics[M].Berlin:Springer Science & Business Media, 2012.
[31] BANKS H T, FAKHROO F. Legendre-Tau approximations for LQR feedback control of acoustic pressure fields[J]. Journal of Mathematical Systems Estimation and Control, 1998, 8:393-426.
[32] GONG Q, ROSS I M, KANG W, et al. On the pseudospectral convector mapping theorem for nonlinear optimal control[C]//Proceedings of the 45th IEEE Conference on Decision and Control. Piscataway:IEEE Press, 2006:2679-2686.
[33] ROSS I M, FAHROO F. A pseudospectral transformation of the convectors of optimal control systems[J]. IFAC Proceedings Volumes, 2001, 34(13):543-548.
[34] KANG W, GONG Q, ROSS I M. Convergence of pseudospectral methods for a class of discontinuous optimal control[C]//Proceedings of the 44th IEEE Conference on Decision and Control. Piscataway:IEEE Press, 2005:2799-2804.
[35] GONG Q, ROSS I M, KANG W, et al. Dual convergence of the Legendre pseudospectral method for solving nonlinear constrained optimal control problems[C]//Proceedings of the IASTED International Conference on Intelligent Systems and Control, 2005.
[36] FLEMING A, ROSS I M. Optimal control of spinning axisymmetric spacecraft:A pseudospectral approach[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008.
[37] FAHROO F, ROSS I M. Advances in pseudospectral methods for optimal control[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008.
[38] KANG W. Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems[J]. Journal of Control Theory and Applications, 2010, 8(4):391-405.
[39] FAHROO F, ROSS I M. Costate estimation by a Legendre pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2):270-277.
[40] JOSSELYN S, ROSS I M. Rapid verification method for the trajectory optimization of reentry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(3):505-508.
[41] REA J. Launch vehicle trajectory optimization using a Legendre pseudospectral method[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[42] PARK C, GONG Q, ROSS I, et al. Fuel-optimal design of moon-earth trajectories using Legendre pseudospectral method[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA, 2008.
[43] BOLLINO K P, ROSS I M. A pseudospectral feedback method for real-time optimal guidance of reentry vehicles[C]//2007 American Control Conference. Piscataway:IEEE Press, 2007:3861-3867.
[44] BOLLINO K, OPPENHEIMER M, DOMAN D. Optimal guidance command generation and tracking for reusable launch vehicle reentry[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[45] BOLLINO K, ROSS M, DOMAN D. Optimal nonlinear feedback guidance for reentry vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[46] BENSON D. A gauss pseudospectral transcription for optimal control[D]. Cambridge:Massachusetts Institute of Technology, 2005.
[47] HUNTINGTON G T. Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems[D]. Cambridge:Massachusetts Institute of Technology, 2007.
[48] HUNTINGTON G T, RAO A V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):689-698.
[49] DARBY C L, RAO A V. Optimal impulsive LEO to LEO multiple-pass aeroassisted orbital transfer for small spacecraft[C]//20th AAS/AIAA Space Flight Mechanics Meeting.Reston:AIAA, 2010.
[50] GOGU C, MATSUMURA T, HAFTKA R T, et al. Aeroassisted orbital transfer trajectory optimization considering thermal protection system mass[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3):927-938.
[51] LIU F, HAGER W W, RAO A V. Adaptive mesh refinement method for optimal control using decay rates of Legendre polynomial coefficients[J]. IEEE Transactions on Control Systems Technology, 2017, 26(4):1475-1483.
[52] LIU F, HAGER W W, RAO A V. Adaptive mesh refinement method for optimal control using non-smoothness detection and mesh size reduction[J]. Journal of the Franklin Institute, 2015, 352(10):4081-4106.
[53] DENNIS M E, HAGER W W, RAO A V. Computational method for optimal guidance and control using adaptive Gaussian quadrature collocation[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(9):2026-2041.
[54] AGAMAWI Y M, RAO A V. CGPOPS:A C++ software for solving multiple-phase optimal control problems using adaptive gaussian quadrature collocation and Sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2020, 46(3):1-38.
[55] LIU X, SHEN Z, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2):227-241.
[56] WANG Z, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2603-2615.
[57] WANG Z, GRANT M J. Improved sequential convex programming algorithms for entry trajectory optimization[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[58] PATTERSON M A, RAO A V. GPOPS-II:A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1):1-37.
[59] MOORE J K, VAN DEN BOGERT A J. OPTY:Software for trajectory optimization and parameter identification using direct collocation[J]. Journal of Open Source Software, 2018, 3(21):300.
[60] ELISSAR Global. DIDO optimal control software.[EB/OL].[2020-08-12]. http://www.elissarglobal.com/industry/products/software-3/.
[61] RUTQUIST P E, EDVALL M M. PROPT-Matlab optimal control software[EB/OL]. (2010-04-26)[2020-08-12]. https://tomopt.com/docs/TOMLAB_PROPT.pdf.
[62] TIAN B, FAN W, SU R, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industrial Electronics, 2014, 62(3):1639-1650.
[63] WEBB K D, LU P. Entry guidance by onboard trajectory planning and tracking[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA,2016.
[64] 刘思源, 梁子璇, 任章. 高超声速滑翔飞行器再入段制导方法综述[J]. 中国空间科学技术, 2016,36(6):1-13. LIU S Y, LIANG Z X, REN Z. Review of reentry guidance methods for hypersonic gliding vehicles[J]. Chinese Space Science and Technology, 2016,36(6):1-13(in Chinese).
[65] WINGROVE, RODNEY C. Survey of atmosphere re-entry guidance and control methods[J]. AIAA Journal, 1963, 1(9):2019-2029.
[66] HANSON J M. A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[67] SCHIERMAN J D, WARD D G, HULL J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):975-988.
[68] GOUPIl P, MARCOS A. Advanced diagnosis for sustainable flight guidance and control:The European ADDSAFE project[C]//Aerospace Technology Conference and Exposition, 2011.
[69] HARPOLD J C, GRAVES C A. Shuttle entry guidance[J].Journal of the Astronautical Sciences, 1979, 27(3):239-268.
[70] LU P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149.
[71] MU L, YU X, ZHANG Y M, et al. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase[J]. Acta Astronautica, 2018, 143:62-75.
[72] MEASE K D. Shuttle entry guidance revisited[C]//AIAA Guidance, Navigation and Control Conference. Reston:AIAA, 1992.
[73] YANG X L, MEASE K D. Entry guidance and trajectory tracking error analysis[J]. Journal of Astronautics, 2004, 25(3):283-288.
[74] TALOLE S E, MEASE K D, Sliding mode observer for drag tracking in entry guidance[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2007.
[75] XU M L, CHEN K J, LIU L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Science China Technological Sciences, 2012, 55(3):856-866.
[76] ZHU J, ZHANG S. Adaptive optimal gliding guidance independent of QEGC[J]. Aerospace Science and Technology, 2017, 71:373-381.
[77] BENITO J, MEASE K. Nonlinear predictive controller for drag tracking in entry guidance[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston:AIAA,2008.
[78] HE R, LIU L, TANG G, et al. Entry trajectory generation without reversal of bank angle[J]. Aerospace Science and Technology, 2017, 71:627-635.
[79] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481.
[80] LIANG Z, LIU S, LI Q, et al. Lateral entry guidance with no-fly zone constraint[J]. Aerospace Science and Technology, 2017, 60:39-47.
[81] PAN L, PENG S, XIE Y, et al. 3D guidance for hypersonic reentry gliders based on analytical prediction[J]. Acta Astronautica, 2020, 167:42-51.
[82] MEASE K, TEUFEL P, SCHÖNENBERGER H, et al. Re-entry trajectory planning for a reusable launch vehicle[C]//24th Atmospheric Flight Mechanics Conference,1999.
[83] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[84] CHEN D, CHAO T, S WANG Y, et al. Rapid three-dimensional constrained trajectory generation for near space hypersonic vehicles[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA,2012.
[85] LU P. Closed-form control laws for linear time-varying systems[J]. IEEE Transactions on Automatic Control, 2000, 45(3):537-542.
[86] DUKEMAN G. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[87] TIAN B, ZONG Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method[J]. Acta Astronautica, 2011, 68(7-8):1176-1184.
[88] LIU X, LU P, PAN B. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1):23-40.
[89] WANG Z, GRANT M J. Autonomous entry guidance for hypersonic vehicles by convex optimization[J]. Journal of Spacecraft and Rockets, 2018, 55(4):993-1006.
[90] 宗群,李智禹,叶林奇,等.变信赖域序列凸规划RLV再入轨迹在线重构[J].哈尔滨工业大学学报,2020,52(3):147-155. ZONG Q, LI Z Y, YE L Q, et al. Variable trust region sequential convex programming for RLV online reentry trajectory reconstruction[J]. Journal of Harbin Institute of Technology,2020,52(3):147-155(in Chinese).
[91] 周祥,张洪波,何睿智,等.基于凸优化的再入轨迹三维剖面规划方法[J].航空学报,2020,41(11):623842. ZHOU X, ZHANG H B, HE R Z, et al. Entry trajectory planning based on 3-D profile via convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(11):523842(in Chinese).
[92] ZHANG D, LIU L, WANG Y. On-line reentry guidance algorithm with both path and no-fly zone constraints[J]. Acta Astronautica, 2015, 117:243-253.
[93] LU Q, ZHOU J. Re-entry guidance for hypersonic vehicle satisfying no-fly zone constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40(13):3899-3908.
[94] XUE S, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1281.
[95] JOHNSON W R, LU P, STACHOWIAK S. Automated re-entry system using FNPEG[C]//AIAA Guidance, Navigation, and Control Conference.Reston:AIAA 2017.
[96] LU P, BRUNNER C W, STACHOWIAK S J, et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2):230-247.
[97] 王涛,张洪波,朱如意,等.考虑阻力加速度的再入预测-校正制导算法[J].宇航学报,2017,38(2):143-151. WANG T, ZHANG H B, ZHU R Y, et al. Predictor-corrector reentry guidance based on drag acceleration[J]. Journal of Astronautics,2017,38(2):143-151(in Chinese).
[98] YONG E, QIAN W, HE K. An adaptive predictor-corrector reentry guidance based on self-definition way-points[J]. Aerospace Science and Technology, 2014, 39:211-221.
[99] LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075.
[100] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
[101] CHENG L, WANG Z, CHENG Y, et al. Multi-constrained predictor-corrector reentry guidance for hypersonic vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(16):3049-3067.
[102] SUSHNIGDHA G, JOSHI A. Evolutionary method based hybrid entry guidance strategy for reentry vehicles[J]. IFAC-PapersOnLine, 2016, 49(5):339-344.
[103] WANG T, ZHANG H, TANG G. Predictor-corrector guidance for entry vehicle based on fuzzy logic[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(2):472-482.
[104] LIN H, DU Y, MOOIJ E, et al. Improved predictor-corrector guidance with hybrid lateral logic for no-fly zone avoidance[C]//2019 International Conference on Control, Automation and Information Sciences. Piscataway:IEEE Press, 2019:1-6.
[105] KYLE D W, LU P. Entry guidance by onboard trajectory planning and tracking[C]//Atmospheric Flight Mechanics Conference, 2016.
[106] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J].航空学报,2020,41(1):023377. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023377(in Chinese).
[107] HODEL A S, HALL C E. Variable-structure PID control to prevent integrator windup[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2):442-451.
[108] CUI N, XU J, MU R, et al. Gain-scheduled reusable launch vehicle attitude controller design[C]//2009 International Conference on Mechatronics and Automation. Piscataway:IEEE Press, 2009:4393-4397.
[109] KERR M, MARCOS A, PEÑIN L, et al. Gain scheduled fdi for a re-entry vehicle[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA 2008.
[110] CAI G B, DUAN G R, HU C H. A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle[J]. International Journal of Innovative Computing, Information and Control, 2011, 7(5):2269-2281.
[111] FEZANS N, ALAZARD D, IMBERT N, et al. Robust LPV control design for a RLV during reentry[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA,2010.
[112] CHAOFAN H, LINGYU Y, ZHENCHAO W, et al. Linear parameter-varying attitude controller design for a reusable launch vehicle during reentry[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway:IEEE Press, 2014:2723-2728.
[113] RUGH W J, SHAMMA J S. Research on gain scheduling[J]. Automatica, 2000, 36(10):1401-1425.
[114] 宗群, 田栢苓, 董琦, 等. 高超声速飞行器鲁棒自适应控制[M]. 北京:科学出版社, 2018:21-35. ZONG Q, TIAN B L, DONG Q, et al. Robust adaptive control of hypersonic vehicle[M]. Beijing:Academic Press, 2005:21-35(in Chinese).
[115] 张玉芳. 基于反步法的高超声速飞行器自适应控制方法研究[D]. 哈尔滨:哈尔滨工程大学, 2014. ZHANG Y F. Adaptive control method based on back stepping for hypersonic aircraft[D]. Harbin:Harbin Engineering University, 2014(in Chinese).
[116] 毛奇. 基于自适应模糊策略的可重复运载器姿态控制研究[D]. 天津:天津大学, 2018. MAO Q. Research on attitude control for reusable launch vehicles based on adaptive fuzzy strategy[D]. Tianjin:Tianjin University, 2018(in Chinese).
[117] YU J, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92:173-180.
[118] GUO J, WANG G, GUO Z, et al. New adaptive sliding mode control for a generic hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(7):1295-1303.
[119] WANG F, ZONG Q, TIAN B. Adaptive backstepping finite time attitude control of reentry RLV with input constraint[J]. Mathematical Problems in Engineering, 2014, 2014.
[120] ZHAO S, LI X, BU X, et al. Prescribed performance tracking control for hypersonic flight vehicles with model uncertainties[J]. International Journal of Aerospace Engineering, 2019.DOI:10.1155/2019/3505614.
[121] WANG F, HUA C, ZONG Q. Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(10):1308-1327.
[122] BU X, HE G, WANG K. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design[J]. ISA transactions, 2018, 75:88-100.
[123] 骆长鑫,张东洋,雷虎民,等.输入受限的高超声速飞行器鲁棒反演控制[J].航空学报,2018,39(4):321801. LUO C X, ZHANG D Y, LEI H M, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica,2018,39(4):321801(in Chinese).
[124] LIU Y, WU X, ZHU J J, et al. Omni-directional mobile robot controller design by trajectory linearization[C]//Proceedings of the 2003 American Control Conference. Piscataway:IEEE Press, 2003:3423-3428.
[125] WU X, LIU Y, ZHU J J. Design and real time testing of a trajectory linearization flight controller for the "Quanser UFO"[C]//Proceedings of the 2003 American Control Conference. Piscataway:IEEE Press, 2003:3913-3918.
[126] ZHU J J. A unified spectral theory for linear time-varying systems-progress and challenges[C]//Proceedings of 199534th IEEE Conference on Decision and Control. Piscataway:IEEE Press, 1995:2540-2546.
[127] ZHU J, BANKER B, HALL C. X-33 ascent flight control design by trajectory linearization-a singular perturbation approach[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[128] ZHU J J, FUNSTON K, HALL C E, et al. X-33 entry flight control design by trajectory linearization-A singular perturbation approach[C]//Guidance and Control, 2001:151-170.
[129] BEVACQUA T, BEST E, HUIZENGA A, et al. Improved trajectory linearization flight controller for reusable launch vehicles[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004.
[130] ZHU J, HUIZENGA A. A type two linearization controller for a resuable launch vehicle-A singular perturbation approach[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2004.
[131] 张春雨,姜长生,朱亮. 基于模糊干扰观测器的空天飞行器轨迹线性化控制[J]. 宇航学报, 2007, 28(1):33-38. ZHANG C Y, JIANG C S, ZHU L. Trajectory linearization control for an aerospace vehicle based on fuzzy disturbance observer[J]. Journal of Astronautics, 2007, 28(1):33-38(in Chinese).
[132] 朱亮,姜长生,张春雨. 基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J]. 航空学报, 2008, 28(3):673-677. ZHU L, JIANG C S, ZHANG C Y. Adaptive trajectory linearization control for aerospace vehicle based on RBFNN disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2008, 28(3):673-677(in Chinese).
[133] 朱亮,姜长生,薛雅莉. 基于单隐层神经网络的空天飞行器鲁棒自适应轨迹线性化控制[J]. 兵工学报, 2008, 29(1):52-56. ZHU L, JIANG C S, XUE Y L. Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neural networks[J]. Acta Armamentarii, 2008, 29(1):52-56(in Chinese).
[134] 朱亮. 空天飞行器不确定非线性鲁棒自适应控制[D]. 南京:南京航空航天大学, 2006. ZHU L. Robust adaptive control for uncertain nonlinear systems and its applications to aerospace vehiclesp[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006(in Chinese).
[135] 田栢苓,高超声速飞行器再入轨迹设计与制导控制方法研究[D]. 天津:天津大学, 2011. TIAN B L. Research on reentry trajectory design and guidance control for hypersonic vehicle[D]. Tianjin:Tianjin University, 2011(in Chinese).
[136] SHTESSEL Y, KRUPP D. Reusable launch vehicle trajectory control in sliding modes[C]//Proceedings of the 1997 American Control Conference. Piscataway:IEEE Press, 1997:2557-2561.
[137] SHTESSEL Y, MCDUFFIE J, JACKSON M, et al. Sliding mode control of the X-33 vehicle in launch and re-entry modes[C]//Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA,1998.
[138] SHTESSEL Y, HALL C, JACKSON M. Reusable launch vehicle control in multiple-time-scale sliding modes[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(6):1013-1020.
[139] SHTESSEL Y B, HALL C E. Multiple time scale sliding mode control of reusable launch vehicles in ascent and descent modes[C]//Proceedings of the 2001 American Control Conference. Piscataway:IEEE Press, 2001:4357-4362.
[140] SHTESSEL Y B, ZHU J J, DANIELS D. Reusable launch vehicle attitude control using a time-varying sliding mode control technique[C]//Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory. Piscataway:IEEE Press, 2002:81-85.
[141] HAN Z, ZONG Q, TIAN B L, et al. Hypersonic vehicle attitude control using Terminal sliding mode control[J]. Control and Decision, 2013, 28(2):259-265.
[142] PU M, WU Q X, JIANG C S, et al. Near space vehicle control based on second-order dynamic terminal sliding mode[J]. Journal of Astronautics, 2010, 31(4):1056-1062.
[143] SU R, ZONG Q, TIAN B, et al. Comprehensive design of disturbance observer and non-singular terminal sliding mode control for reusable launch vehicles[J]. IET Control Theory & Applications, 2015, 9(12):1821-1830.
[144] YOU M, ZONG Q, TIAN B, et al. Fixed-time re-entry attitude control based on nonsingular terminal sliding mode[J]. IMA Journal of Mathematical Control and Information, 2018, 35(4):1043-1059.
[145] TIAN B, LU H, ZUO Z, et al. Multivariable uniform finite-time output feedback reentry attitude control for RLV with mismatched disturbance[J]. Journal of the Franklin Institute,2018, 355(8):3470-3487.
[146] LIU H, BAO W, LI H, et al. Multivariable disturbance observer-based fuzzy fast terminal sliding mode attitude control for a hypersonic vehicle[J]. Journal of Aerospace Engineering, 2019, 32(2):04018152.
[147] TIAN B, FAN W, ZONG Q, et al. Nonlinear robust control for reusable launch vehicles in reentry phase based on time-varying high order sliding mode[J]. Journal of the Franklin Institute, 2013, 350(7):1787-1807.
[148] TIAN B, ZONG Q, WANG J, et al. Quasi-continuous high-order sliding mode controller design for reusable launch vehicles in reentry phase[J]. Dialogues in Cardiovascular Medicine Dcm, 2013, 28(1):198-207.
[149] WANG J, ZONG Q, SU R, et al. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle[J]. ISA transactions, 2014, 53(3):690-698.
[150] SAGLIANO M, MOOIJ E, THEIL S. Adaptive disturbance-based high-order sliding-mode control for hypersonic-entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):521-536.
[151] YIN X, WANG B, LIU L, et al. Disturbance observer-based gain adaptation high-order sliding mode control of hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 89:19-30.
[152] ZHAO Z, YANG J, LI S, et al. Finite-time super-twisting sliding mode control for Mars entry trajectory tracking[J]. Journal of the Franklin Institute, 2015, 352(11):5226-5248.
[153] TIAN B, FAN W, ZONG Q. Integrated guidance and control for reusable launch vehicle in reentry phase[J]. Nonlinear Dynamic. 2015, 80(1-2):397-412.
[154] DONG Q, ZONG Q, TIAN B, et al. Integrated finite-time disturbance observer and controller design for reusable launch vehicle in reentry phase[J]. Journal of Aerospace Engineering, 2017, 30(1):04016076.
[155] DONG Q, ZONG Q, TIAN B, et al. Adaptive-gain multivariable super-twisting sliding mode control for reentry RLV with torque perturbation[J]. International Journal of Robust and Nonlinear Control, 2017, 27(4):620-638.
[156] YOU M, ZONG Q, ZUO L, et al. Multivariable supertwisting fixed-time approach for RLV re-entry attitude control[J]. International Journal of Robust and Nonlinear Control, 2019, 29(4):973-989.
[157] 魏才盛, 罗建军, 殷泽阳. 航天器姿态预设性能控制方法综述[J]. 宇航学报, 2019, 40(10):1167-1176. WEI C S, LUO J J, YIN Z Y. A review of prescribed performance control for spacecraft attitude[J]. Journal of Astronautics, 2019, 40(10):1167-1176(in Chinese).
[158] 王宏亮, 王小博, 李万兵. 基于预设性能的非线性系统反演自适应控制[J]. 科学技术与工程, 2019, 19(31):191-196. WANG H L, WANG X B, LI W B. Backsteeping adaptive control of nonlinear systems based on presupposed performance[J]. Science Technology and Engineering, 2019, 19(31):191-196(in Chinese).
[159] CHEN B W, TAN L G. Adaptive anti-saturation tracking control with prescribed performance for hypersonic vehicle[J]. International Journal of Control, Automation and Systems, 2020,18(2):394-404.
[160] JING Y, LIU Y, ZHOU S. Prescribed performance finite-time tracking control for uncertain nonlinear systems[J]. Journal of Systems Science and Complexity, 2019, 32(3):803-817.
[161] BU X. Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design[J]. Nonlinear Dynamics, 2018, 91(1):525-538.
[162] WANG F, ZOU Q, ZONG Q, et al. Adaptive prescribed performance fault tolerant control for a flexible air-breathing hypersonic vehicle with uncertainty[J]. IEEE Access, 2019, 7:35018-35033.
[163] GHASEMI A, MORADI M, MENHAJ M B. Adaptive fuzzy sliding mode control design for a low-lift reentry vehicle[J]. Journal of Aerospace Engineering, 2011, 25(2):210-216.
[164] SHEN Q, JIANG B, COCQUEMPOT V. Fuzzy logic system-based adaptive fault-tolerant control for near-space vehicle attitude dynamics with actuator faults[J]. IEEE Transactions on Fuzzy Systems, 2012, 21(2):289-300.
[165] MAO Q, DOU L, ZONG Q, et al. Attitude control design for reusable launch vehicles using adaptive fuzzy control with compensation controller[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(3):823-836.
[166] MAO Q, DOU L, ZONG Q, et al. Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control[J]. Aerospace Science and Technology, 2018, 72:36-48.
[167] 窦立谦, 毛奇, 苏沛华. 基于补偿控制器的可重复使用运载器自适应模糊姿态控制[J]. 天津大学学报:自然科学与工程技术版, 2017, 50(12):1241-1248. DOU L Q, MAO Q, SU P H. Adaptive fuzzy attitude control for reusable launch vehicles based on compensation controller[J]. Journal of Tianjin University (Science and Technology), 2017, 50(12):1241-1248(in Chinese).
[168] 窦立谦, 毛奇, 苏沛华. 基于自适应模糊H 控制的可重复使用运载器再入姿态控制[J]. 控制与决策, 2018, 33(7):1181-1189. DOU L Q, MAO Q, SU P H. Adaptive fuzzy H attitude control design for reentry RLV[J]. Control and Decision, 2018, 33(7):1181-1189(in Chinese).
[169] WU H N, FENG S, LIU Z Y, et al. Disturbance observer based robust mixed H2/H fuzzy tracking control for hypersonic vehicles[J]. Fuzzy Sets and Systems, 2017, 306:118-136.
[170] MAO Q, DOU L, YANG Z, et al. Fuzzy disturbance observer-based adaptive sliding mode control for reusable launch vehicles with aeroservoelastic characteristic[J]. IEEE Transactions on Industrial Informatics, 2019, PP(99):1.
文章导航

/