流体力学与飞行力学

非均匀来流下三维激波反问题的微元密切轴对称解法

  • 周航 ,
  • 金志光
展开
  • 南京航空航天大学 能源与动力学院, 南京 210016

收稿日期: 2020-03-31

  修回日期: 2020-07-23

  网络出版日期: 2020-08-17

Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows

  • ZHOU Hang ,
  • JIN Zhiguang
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-03-31

  Revised date: 2020-07-23

  Online published: 2020-08-17

摘要

传统的密切轴对称理论被广泛应用于均匀来流下的三维密切曲面激波反设计,为解决非均匀来流条件下的三维曲面激波反问题,提出了一种微元密切轴对称流场(MOA)求解方法。该方法沿激波面的周向和流向构建一系列微元密切面,在每个微元面内进行三维向二维流动的等效转换,从而突破了传统密切方法中不能有横向波后流动的限制。利用该方法编写设计程序,分别基于带攻角来流条件和外锥型流来流条件重构了标准内锥曲面激波,并与数值仿真结果进行了比较。结果表明,非均匀来流下激波曲面的三维形状均与预设形状完全一致,实现了非均匀来流下曲面激波形状可控。MOA方法在吸气式高超声速推进领域中前体/进气道一体化设计方面有重要应用前景。

本文引用格式

周航 , 金志光 . 非均匀来流下三维激波反问题的微元密切轴对称解法[J]. 航空学报, 2020 , 41(12) : 124035 -124035 . DOI: 10.7527/S1000-6893.2020.24035

Abstract

The traditional osculating axisymmetric flow theory is widely used in the inverse design of generalized shock waves under the condition of uniform incoming flows. To solve the inverse problem of the three-dimensional generalized shock wave design under nonuniform incoming flows, a novel method, Micro Osculating Axisymmetric flow (MOA) method, is proposed in this paper. The method constructs a series of micro osculating planes along the shock wave surface in both spanwise and streamwise directions. Actual three-dimensional flows are then approximated by two-dimensional axisymmetric flows in each micro osculating plane. Thus, the new method breaks the restriction of no lateral velocities or lateral pressure gradients in the traditional method. To validate its correctness and feasibility, an internal conical shock wave at a 4° angle of attack, and the other one in an external conical flow of a 10° cone half-angle are reconstructed by the novel method. The CFD results of the two cases indicate that the three-dimensional shock wave geometries completely match the prescribed ones, thereby realizing the control of the three-dimensional shock wave geometry under nonuniform incoming flows. The MOA method has significant application prospects in the field of air-breathing hypersonic forebody/inlet integrated design.

参考文献

[1] POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines:The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6):1170-1176.
[2] FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1):27-58.
[3] HANEY J W, BEAULIEU W D. Waverider inlet integration issues:AIAA-1994-0383[R]. Reston:AIAA, 1994.
[4] DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152(9):639-656.
[5] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody:AIAA-2009-7421[R]. Reston:AIAA, 2009.
[6] HE X Z, ZHOU Z, QIN S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6):1582-1590.
[7] EGGERS A J, ASHLEY H, SPRINGER G S. Hypersonic waverider configurations from the 1950's to the 1990's[C]//Proceedings of the 1 st International Hypersonic Waverider Symposium, 1990.
[8] LUNAN D. Waverider, a revised chronology:AIAA-2015-3529[R]. Reston:AIAA, 2015.
[9] BILLIG F S, KOTHARI A P. Streamline tracing:technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471.
[10] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(9):521-528.
[11] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Archive of Applied Mechanics,1968, 37(1):56-72.
[12] RASMUSSEN N L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[13] TAKASHIMA N, LEWIS M J. Wedge-cone waverider configuration for engine-airframe integration[J]. Journal of Aircraft, 1995, 32(5):1142-1144.
[14] CUI K, ZHAO D X, YANG G W. Waverider configurations derived from general conical flowfields[J]. Acta Mechanica Sinica, 2007, 23(3):247-255.
[15] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//Proceeding of the 1 st International Hypersonic Waverider Symposium, 1990.
[16] SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8.
[17] JONES K D, SOBIECZKY H, SEEBASS A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6):957-963.
[18] CHAUFFOUR M, LEWIS M J. Corrected waverider design for inlet applications:AIAA-2004-3405[R].Reston:AIAA, 2004.
[19] CLEGG J, RODI P E, MEADE A. Validation of a crossflow velocity model between waverider flowfield planes:AIAA-2019-2813[R]. Reston:AIAA, 2019.
[20] QIAO W Y, YU A Y, WANG Y H. An inverse design method for non-uniform flow inlet with a given shock wave[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(2):287-304.
[21] ZHENG X G, LI Y Q, ZHU C X, et al. Multiple osculating cones' waverider design method for ruled shock surface[J]. AIAA Journal, 2020, 58(2):854-866.
[22] CHEN L L, DENG X L, GUO Z, et al. A Novel approach for design and analysis of volume-improved osculating-cone waveriders[J]. Acta Asctonautica, 2019, 161(2):430-445.
[23] LIU J, LIU Z, WEN X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162(5):160-167.
[24] LIU Z, LIU J, DING F. Influence of surface pressure distribution of basic flowfield on osculating axisymmetric waverider[J]. AIAA Journal, 2019, 57(10):4560-4568.
[25] O'BRIEN T F, LEWIS M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123.
[26] WANG J F, LIU C Z, PENG B. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151(6):504-510.
[27] YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E:Technological Sciences, 2009, 52(7):2017-2028.
[28] ZHAO Z T, HUANG W, LI S B, et al. Variable mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147(4):163-174.
[29] HUANG G P, ZUO F Y, Qiao W Y. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration[J]. Aerospace Science and Technology, 2018, 74(1):160-172.
[30] ZUCROW M J, HOFFMAN J D. Gas dynamics, Vol.2[M]. New York:John Wiley & Sons, 1976:191-192.
[31] RANSOM V H, HOFFMAN J D, THOMSON H D. A second-order bicharacteristics method for three-dimensional, steady, supersonic flow[J]. AIAA Journal, 1972, 10(12):1573-1581.
[32] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J].航空学报, 2018, 39(10):122078. QIAO W Y, YU A Y, YANG D W, et al. Integrated design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078(in Chinese).
[33] 张文浩,柳军,丁峰.内转式进气道/冯·卡门乘波体一体化设计方法[J].航空学报, 2020, 41(3):123502. ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet and Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123502(in Chinese).
[34] 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015, 36(1):289-301. LI Y Z, ZHANG K Y. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301(in Chinese).
文章导航

/