基于滑模控制的剖面跟踪制导律

  • 李帅聪 ,
  • 何睿智 ,
  • 汤国建 ,
  • 敖鹏
展开
  • 1. 国防科技大学 空天科学学院, 长沙 410073;
    2. 中国人民解放军96901部队, 北京 100094

收稿日期: 2020-07-27

  修回日期: 2020-08-03

  网络出版日期: 2020-08-07

Profile tracking guidance law based on sliding mode control

  • LI Shuaicong ,
  • HE Ruizhi ,
  • TANG Guojian ,
  • AO Peng
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense and Technology, Changsha 410073, China;
    2. 96901 Unit, PLA, Beijing 100094, China

Received date: 2020-07-27

  Revised date: 2020-08-03

  Online published: 2020-08-07

摘要

针对高超声速飞行器滑翔段的高精度制导问题,考虑复杂多约束条件以及干扰和不确定因素的影响,设计了一种基于全局积分滑模控制的剖面跟踪制导方法。首先,将多重约束转化为阻力加速度-速度(D-V)平面内的再入走廊;然后,以终端精度和总吸热量为性能指标,采用分段函数的形式优化设计出一条标准D-V剖面;再基于简化的动力学模型,推导得到关于阻力加速度微分和速度的二阶非线性模型;最后,基于滑模控制理论,设计全局积分滑模面和指数趋近律,获得控制量幅值大小,并结合侧向方位误差走廊确定控制量符号,从而实现对标准剖面的有效跟踪。采用CAV-H滑翔再入模型进行数值仿真,分析验证了提出的基于滑模控制的剖面跟踪制导律具有较好的跟踪性能和精度。

本文引用格式

李帅聪 , 何睿智 , 汤国建 , 敖鹏 . 基于滑模控制的剖面跟踪制导律[J]. 航空学报, 2020 , 41(S2) : 724578 -724578 . DOI: 10.7527/S1000-6893.2020.24578

Abstract

A profile tracking guidance method based on global integrated sliding mode control is designed for the high precision guidance of the hypersonic vehicle gliding phase considering the influence of complex multi-constraint conditions and interference and uncertainty factors. First, the multiple constraints are transformed into the reentry corridor in the drag acceleration velocity (D-V) plane. A standard D-V profile is then optimized and designed in the form of subsection function with the terminal precision and total heat absorption as performance indexes. Moreover, based on the simplified dynamic model, the second order nonlinear model of drag acceleration differential and velocity is derived. Finally, based on the sliding mode control theory, the global integral sliding mode surface and exponential approach law are designed to obtain the amplitude of the control quantity, and the symbol of the control quantity is determined by combining with the lateral azimuth error corridor, so as to realize the effective tracking of the standard profile. The CAV-H glide reentry model is used for numerical simulation, and it is verified that the proposed profile tracking guidance law based on sliding mode control has desirable tracking performance and accuracy.

参考文献

[1] 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3):322565. WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Aestronautica Sinica, 2019, 40(3):322565(in Chinese).
[2] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述综述[J]. 航空学报, 2020, 41(1):023377. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023377(in Chinese).
[3] 黄汉斌, 梁禄扬, 杨业. 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报, 2018, 39(12):322558. HUANG H B, LIANG L Y, YANG Y. Reentry trajectory planning and guidance method based on inverse drag acceleration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322558(in Chinese).
[4] 王涛, 张洪波, 朱如意, 等. 考虑阻力加速度的再入预测-校正制导算法[J]. 宇航学报, 2017, 38(2):143-151. WANG T, ZHANG H B, ZHU R Y, et al. Predictor-corrector reentry guidance based on drag acceleration[J]. Journal of Astronautics, 2017, 38(2):143-151(in Chinese).
[5] 王涛. 天地往返飞行器再入预测-校正制导与姿态控制方法研究[D]. 长沙:国防科技大学, 2017:24-51. WANG T. Predictor-corrector entry guidance and attitude control for reusable launch vehicle[D]. Changsha:National University of Defense Technology, 2017:24-51(in Chinese).
[6] HARPOLD J C, GAVERT D E. Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[7] 胡建学, 陈克俊, 赵汉元, 等. RLV再入标准轨道制导与轨道预测制导方法比较分析[J]. 国防科技大学学报, 2007, 29(1):26-29. HU J X, CHEN K J, ZHAO H Y, et al. Comparisons between reference-trajectory and predictor-corrector entry guidances for RLVs[J]. Journal of National University of Defense Technology, 2007, 29(1):26-29(in Chinese).
[8] 高晨, 李惠峰, 张平. 再入轨迹跟踪控制的非线性方法研究[J]. 系统仿真学报, 2009, 21(9):2700-2704. GAO C, LI H F, ZHANG P. Research on new nonlinear control method applied in tracking control problem[J]. Journal of System Simulation, 2009, 21(9):2700-2704(in Chinese).
[9] DUKEMAN G. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, & Control Conference & Exhibit. Reston:AIAA, 2002:1-10.
[10] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
[11] LU P. Entry guidance and trajectory control for reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149.
[12] 唐硕, 闫晓东. 基于反馈线性化的H-V返回轨道跟踪方法[J]. 宇航学报, 2008, 29(5):1546-1550. TANG S, YAN X D. H-V return tracking method based on feedback linearization[J]. Journal of Astronautics, 2008, 29(5):1546-1550(in Chinese).
[13] MEASE K D, KREMER J P. Shuttle entry guidance revisited using nonlinear geometric method[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1350-1356.
[14] 吴旭忠. 滑翔式飞行器再入制导与控制方法研究[D]. 北京:北京理工大学, 2015:49-51. WU X Z. Research on entry guidance and control algorithm for glide vehicle[D]. Beijing:Beijing Institute of Technology, 2015:49-51(in Chinese)
[15] ZHANG D Y, LEI H M, WU L, et al. A trajectory tracking guidance law based on sliding mode variable structure control[J]. Systems Engineering and Electronics, 2014, 36(4):721-727.
[16] LU Y S, CHEN J S. Design of a global sliding-mode controller for a motor drive with bounded control[J]. International Journal of Control, 1995, 62(5):1001-1019.
[17] 张运喜, 孙明玮, 陈增强. 滑模变结构有限时间收敛制导律[J]. 控制理论与应用, 2012, 29(11):1413-1418. ZHANG Y X, SUN M W, CHEN Z Q. Sliding-mode variable structure finite-time convergence guidance law[J]. Control Theory&Applications, 2012, 29(11):1413-1418(in Chinese).
[18] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社, 2012:87-89. LIU J K. Sliding mode control design and MATLAB simulation[M]. Beijing:Tsinghua University Press, 2012:87-89(in Chinese).
[19] 陈克俊, 刘鲁华, 孟云鹤. 远程火箭飞行动力学与制导[M]. 长沙:国防工业出版社, 2014:326-334. CHEN K J, LIU L H, MENG Y H. Launch vehicle flight dynamics and guidance[M]. Changsha:National Defence Industry Press, 2014:326-334(in Chinese).
[20] 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronatica Sinica, 2018, 39(6):321763(in Chinese).
[21] 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1):249-258. HU Q L, JIANG B Y, SHI Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):249-258(in Chinese).
文章导航

/