电子电气工程与控制

基于3D Zernike矩的巡检器与空间站的相对导航算法

  • 王润 ,
  • 郁丰 ,
  • 周士兵 ,
  • 刘方武
展开
  • 1. 南京航空航天大学 空间光电探测与感知工业和信息化部重点实验室, 南京 211106;
    2. 南京航空航天大学 航天学院, 南京 211106;
    3. 中国科学院 上海技术物理研究所, 上海 200083

收稿日期: 2020-05-26

  修回日期: 2020-06-30

  网络出版日期: 2020-08-07

基金资助

国家自然科学基金(61673212);上海技术物理研究所创新专项(CX-199)

Algorithm for relative navigation between free-flying robots and space station based on 3D Zernike moments

  • WANG Run ,
  • YU Feng ,
  • ZHOU Shibing ,
  • LIU Fangwu
Expand
  • 1. Ministry of Information Technology Key Laboratory of Space Photoelectric Detection and Perception, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    3. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Received date: 2020-05-26

  Revised date: 2020-06-30

  Online published: 2020-08-07

Supported by

National Natural Science Foundation of China (61673212); Innovation Special Project of Shanghai Institute of Technical Physics (CX-199)

摘要

针对航天器相对导航问题,以空间站表面为"特殊地形",提出一种基于大型航天器表面巡检的相对导航算法。首先,运用巡检飞行器上的TOF (Time of Flight)相机测量空间站表面局部点云数据,以该点云数据为实时图,以空间站表面先验点云数据为基准图。然后,利用3D Zernike矩与三维地形间的一一对应关系,将三维地形匹配转化为基于3D Zernike矩的特征向量匹配。在此基础上求解实时图与匹配上的基准图间的相对位置、相对姿态,从而确定两航天器间的相对导航参数,并通过实验分析了匹配精度及速度的主要影响因素。最后,将该相对导航参数与惯性系统推算的相对导航参数在扩展卡尔曼滤波器的框架下实现信息融合,估计了巡检飞行器与空间站间的相对位置、相对姿态,实验结果表明,相对位置精度优于0.002 m,相对姿态精度优于0.1°。

本文引用格式

王润 , 郁丰 , 周士兵 , 刘方武 . 基于3D Zernike矩的巡检器与空间站的相对导航算法[J]. 航空学报, 2021 , 42(2) : 324298 -324298 . DOI: 10.7527/S1000-6893.2020.24298

Abstract

Taking the space station surface as "special terrain", this paper proposes a relative navigation algorithm based on large spacecraft surface inspection. Firstly, the TOF (Time of Flight) camera on the free-flying robot is employed to measure the local point cloud data, regarded as a real-time map, on the surface of the space station. The priori point cloud data on the space station surface is regarded as the reference map. Then the one-to-one correspondence between the 3D Zernike moments and the three-dimensional terrain is used to convert the three-dimensional terrain matching into the feature vector matching based on the 3D Zernike moments. On this basis, the relative position and relative attitude between the real-time map and the reference map are solved to determine the relative navigation parameters between the two spacecraft, and the main factors influencing the matching accuracy and speed are analyzed through experiments. Finally, the relative navigation parameters obtained via terrain matching and the inertial system are fused under the framework of the extended Kalman filter to estimate the relative position and relative attitude between the free-flying robot and the space station. The experimental results show that the estimation accuracy of the relative position is better than 0.002 m, and accuracy of the relative attitude is better than 0.1°.

参考文献

[1] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):5-17. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory & Applications, 2018, 35(10):5-17(in Chinese).
[2] 常海涛, 黄攀峰, 王明, 等. 空间细胞机器人接管控制的分布式控制分配[J]. 航空学报, 2016, 37(9):2864-2873. CHANG H T, HUANG P F, WANG M, et al. Distributed control allocation for cellular space robots in takeover control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2864-2873(in Chinese).
[3] 陈炳龙, 耿云海. 对失控航天器在轨服务的自适应滑模控制器设计[J]. 航空学报, 2015, 36(5):1639-1649. CHEN B L, GENG Y H. Adaptive sliding mode controller design for on-orbit servicing to uncontrollable spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1639-1649(in Chinese).
[4] 郁丰, 赵依, 汪永生. 基于点云矩形面特征的故障航天器位姿测量[J]. 中国惯性技术学报, 2018, 26(2):255-260. YU F, ZHAO Y, WANG Y S. Pose measurement for malfunctioned spacecraft by utilizing rectangular feature extracted from point cloud[J]. Journal of Chinese Inertial Technology, 2018, 26(2):255-260(in Chinese).
[5] FREDRICKSON S E. Mini AERCam for in-space inspection[C]//In-space Non-destructive Inspection Technology Meeting. Houston:NASA Johnson Space Center, 2012:2583.
[6] 陈雷, 黄仰博, 刘文祥, 等. 多全球导航卫星系统联合的探月飞行器轨道定位分析[J]. 国防科技大学学报, 2015, 37(3):39-44. CHEN L, HUANG Y B, LIU W X, et al. Analysis of multi-GNSS united lunar explorer orbit positioning[J]. Journal of National University of Defense Technology, 2015, 37(3):39-44(in Chinese).
[7] VENTURA J, FLEISCHNER A, WALTER U. Pose tracking of a noncooperative spacecraft during docking maneuvers using a time-of-flight sensor[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA SciTech, 2016:0875.
[8] REGOLI L, RAVANDOOR K, SCHMIDT M, et al. Advanced techniques for spacecraft motion estimation using PMD sensors[J]. IFAC Proceedings Volumes, 2012, 45(4):320-325.
[9] MARTINEZ H G, GIORGI G, EISSFELLER B. Pose estimation and tracking of non-cooperative rocket bodies using time-of-flight cameras[J]. Acta Astronautica, 2017, 139:165-175.
[10] GHOBADI S E. Real time object recognition and tracking using 2D/3D images[D]. Siegen:University of Siegen, 2010:1-107.
[11] OPROMOLLA R, FASANO G, RUFINO G, et al. Uncooperative pose estimation with a LIDAR-based system[J]. Acta Astronautica, 2015, 110:287-297.
[12] OPROMOLLA R, FASANO G, RUFINO G, et al. A model-based 3D template matching technique for pose acquisition of an uncooperative space object[J]. Sensors, 2015, 15(3):6360-6382.
[13] ENDRES F, HESS J, ENGELHARD N, et al. An evaluation of the RGB-D SLAM system[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2012:1691-1696.
[14] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332.
[15] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2009:3212-3217.
[16] 陈学伟, 朱耀麟, 武桐, 等. 基于SAC-IA和改进ICP算法的点云配准技术[J]. 西安工程大学学报, 2017, 31(3):395-401. CHEN X W, ZHU Y L, WU T, et al. The point cloud registration technology based on SAC-IA and improved ICP[J]. Journal of Xi'an Polytechnic University, 2017, 31(3):395-401(in Chinese).
[17] NOVOTNI M, KLEIN R. 3D zernike descriptors for content based shape retrieval[C]//Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. Seattle:ACM, 2003:216-225.
[18] 胡修林, 车龙, 叶斌. 3D Zernike矩在三维地形匹配中应用[J]. 测绘科学, 2007, 32(1):107-108. HU X L, CHE L, YE B. The application of 3D Zernike moments in 3D terrain matching[J]. Science of Surveying and Mapping, 2007, 32(1):107-108(in Chinese).
[19] FERNANDO G, ALBERTO G C. Fast spacecraft pose estimation based on zernike moments[C]//Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Toykyo:NARA, 2003:19-23.
[20] 赵逸伦, 乔兵, 靳永强, 等. 一种采用双目视觉加惯性测量的航天器组合相对导航方法[J]. 航天控制, 2016, 34(4):47-52. ZHAO Y L, QIAO B, JIN Y Q, et al. An integrated relative navigation algorithm for spacecraft based on binocular vision and inertial measurement[J]. Aerospace Control, 2016, 34(4):47-52(in Chinese).
[21] WANG K D, ZHU T Q, WANG J L. Real-time terrain matching based on 3D zernike moments[J]. The Journal of Navigation, 2018, 71(6):1441-1459.
[22] YE B, CHEN H F. 3D terrain matching algorithm based on 3D zernike moments[C]//Symposium on Photonics & Optoelectronics. Piscataway:IEEE Press, 2012:1-4.
[23] 叶斌, 胡修林, 张蕴玉, 等. 基于3D Zernike矩的三维地形匹配算法及性能分析[J].宇航学报, 2007, 28(5):176-180. YE B, HU X L, ZHANG W Y, et al. 3D terrain matching algorithm and performance analysis based on 3D Zernike moments[J]. Journal of Astronautics, 2007, 28(5):176-180(in Chinese).
[24] YAN Y, ZHANG Y, TIAN S, et al. Phase analysis of three-dimensional zernike moment for building classification and orientation in digital surface model[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13(1):58-62.
[25] WANG K D, ZHU T Q, GAO Y F, et al. Efficient ter-rain matching with 3D Zernike moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(1):226-235.
[26] 尹智龙, 王可东, 高意峰. 基于InSAR的三维地形匹配导航技术的研究与实现[J]. 太赫兹科学与电子信息学报, 2016, 14(5):717-722. YIN Z L, WANG K D, GAO Y F. Implementation of 3-D terrain matching navigation technology based on InSAR data[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(5):717-722(in Chinese).
文章导航

/