论文

轮腿式火星探测机器人的多目标协同控制

  • 孙筵龙 ,
  • 何俊 ,
  • 邢琰
展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240;
    2. 北京控制工程研究所, 北京 100190

收稿日期: 2020-05-18

  修回日期: 2020-06-11

  网络出版日期: 2020-08-07

基金资助

国家自然科学基金(51575337);装备预研航天联合基金(6141B06220407);空间智能控制技术国家级重点实验室基金(HTKJ2019KL502011)

Multi-target coordinated control of wheel-legged Mars rover

  • SUN Yanlong ,
  • HE Jun ,
  • XING Yan
Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Beijing Institute of Control Engineering, Beijing 100190, China

Received date: 2020-05-18

  Revised date: 2020-06-11

  Online published: 2020-08-07

Supported by

National Natural Science Foundation of China (51575337); Equipment Pre-research Aerospace Joint Fund (6141B06220407); Key Laboratory Fund of Science and Technology on Space Intelligent Control (HTKJ2019-KL502011)

摘要

火星探测任务要求机器人具有对未知的不规则地形的自适应能力和动态稳定性。针对轮腿式火星探测机器人,提出了基于运动学反解模型、车体姿态和轮壤接触力的多目标协同控制策略。通过车体姿态调整运动学建模、一阶低通滤波及腿部阻抗控制算法和基于腿部运动危险系数的重心高度调整算法,实现了车体姿态的跟踪控制、轮壤恒力接触控制和重心最优高度控制,提升了轮腿机器人在非结构地形中的自适应能力、运动稳定性及腿部运动空间的安全性。在MATLAB和UG中建立联合仿真模型,验证了控制策略的有效性。

本文引用格式

孙筵龙 , 何俊 , 邢琰 . 轮腿式火星探测机器人的多目标协同控制[J]. 航空学报, 2021 , 42(1) : 524246 -524246 . DOI: 10.7527/S1000-6893.2020.24246

Abstract

The Mars exploration mission requires the robot to be dynamically stable and adaptive to the unknown irregular terrain. This paper proposes a multi-target coordinated control strategy for a wheel-legged Mars exploration robot based on the inverse kinematics model, the vehicle body attitude and the wheel-to-ground contact force. Through kinematic modeling of vehicle attitude adjustment, the first-order low-pass filtering and leg impedance control algorithm, and the center of gravity height adjustment algorithm based on the leg motion hazard coefficient, we realize the tracking control of the vehicle body attitude, wheel-ground constant force contact control and the optimal control of the center of gravity height, thereby improving the self-adaptability, movement stability and the safety of the leg movement space when the wheel-legged robot passes unstructured topographies. The effectiveness of this control strategy proposed in this paper is verified by the joint simulation of MATLAB and UG.

参考文献

[1] MANGOLD N, BARATOUX D, WITASSE O, et al.Mars:A small terrestrial planet[J]. The Astronomy and Astrophysics Review, 2016, 24(1):42-52.
[2] LAKDAWALLA E. The design and engineering of curiosity[M].Berlin:Springer International Publishing, 2018:138-184.
[3] 高海波, 郑军强, 刘振, 等. 轮-步复合式火星车移动系统设计及分析[J]. 机械工程学报, 2019, 55(1):1-16. GAO H B, ZHENG J Q, LIU Z, et al. Design and performance of a wheel-legged mobility system of mars rover[J]. Journal of Mechanical Engineering, 2019, 55(1):1-16(in Chinese).
[4] WONG C Y, TURKER K, SHARF I, et al. Posture reconfiguration and navigation maneuvers on a wheel-Legged hydraulic robot[J]. Springer Tracts in Advanced Robotics, 2015, 105(1):215-228.
[5] CORDES F, KIRCHNER F, BABU A, et al. Designand field testing of a rover with an actively articulated suspension system in a Mars analog terrain[J]. Journal of Field Robotics, 2018, 35(7):1149-1181.
[6] PENG H, WANG J, SHEN W, et al. Cooperative attitude control for a wheel-legged robot[J]. Peer to Peer Networking and Applications, 2019, 12(6):1741-1752.
[7] 马芳武, 倪利伟, 吴量, 等. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报(工学版), 2019, 49(6):1745-1755. MA F W, NI L W, WU L, et. Position and attitude closed loop control of wheel-legged all terrain mobile robot[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6):1745-1755.
[8] SHRIVASTAVA S, KARSAI A, AYDIN Y O, et al. Material remodeling and unconventional gaits facilitate locomotion of a robophysical rover over granularterrain[J]. Science Robotics, 2020, 42(5):3499.
[9] CORDES F, BABU A, KIRCHNER F. Static force distribution and orientation control for a rover with an actively articulated suspension system[C]//2017 IEEE/RSJ Internationl Conference on Intelligent Robotsand Systems.Piscataway:IEEE Press, 2017:5219-5224.
[10] MORIHIRO Y, SAITO M, TAKAHASHI N, et al. Model predictive posture control considering zero moment point for three-dimensional motion of leg/wheel mobile robot[C]//The Society of Instrument and Control Engineers Annual Conference, 2017:435-439.
[11] HYON S, IDA Y, ISHIKAWA J, et al. Whole-body locomotion and posture control on a torque-controlled hydraulic rover[C]//2019 IEEE/RSJ International conference on Intelligent Robots and Systems.Piscataway:IEEE Press, 2019:4587-4594.
[12] SUN G J, LI J H, CHEN S M, et al. The satellite attitude control law design based on machine learning[C]//Computer and Information Technology, 2014:741-746.
[13] GOHER K M, FADLALLAH S. Control of a two-wheeled machine with two-directions handling mechanism using PID and PD-FLC algorithms[J]. International Journal of Automation and Computing, 2019, 16(4):511-533.
[14] SU Y, WANG T, ZHANG K, et al. Adaptive nonlinear control algorithm for a self-balancing robot[J]. IEEE Access, 2020, 8(1):3751-3760.
[15] 安航, 鲜斌. 无人直升机的姿态增强学习控制设计与验证[J]. 控制理论与应用, 2019, 36(4):15-23. AN H, XIAN B. Attitude reinforcement learning control of an unmanned helicopter with verification[J]. Control Theory and Applications, 2019, 36(4):15-23(in Chinese).
[16] SERAJI H, COLBAUGH R. Force tracking in impe-dance control[J]. The International Journal of Robotics Research, 1997, 16(1):97-117.
[17] 刘智光, 于菲, 张靓, 等. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6):569-574, 588. LIU Z G, YU F, ZHANG L, et al. Force tracking research for robot based on fuzzy adaptive impedance control algorithm[J]. Chinese Journal of Engineering Design, 2015, 22(6):569-574, 588(in Chinese).
[18] 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10):2134-2142. GAN Y H, DUAN J J, DAI X Z. Adaptive variable impedance control for robot force tracking in unstructured environment[J]. Control and Decision, 2019,34(10):2134-2142(in Chinese).
[19] 饶巍林, 彭晋民, 阮玉镇, 等. 单神经元自适应PID的机器人恒力控制研究[J]. 机械科学与技术, 2020, 39(10):1593-1599. RAO W L, PENG J M, RUAN Y Z, et al. Research on constant force control of robot using single neuron adaptive[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10):1593-1599(in Chinese).
[20] LI G, HUANG H, LI B, et al. Robust adaptive force tracking impedance control for robotic capturing of unknown objects[C]//12th International Conference on Intelligent Robotics and Applications, 2019:677-688.
[21] VUKOBRATOVI M, FRANK A A, JURICI D. On the stability of biped locomotion[J]. IEEE Transactions on Bio Medical Engineering, 1970, 17(1):25-36.
[22] GHASEMPOOR A, SEPEHRI N. A measure of stability for mobile manipulators with application to heavy-duty hydraulic machines[J]. Journal of Dynamic Systems Measurement and Control-transactions of The Asme, 1998, 120(3):360-370.
[23] PAPADOPOULOS E, REY D A. The force-angle measure of tipover stability margin for mobile manipulators[J]. Vehicle System Dynamics, 2000, 33(1):29-48.
[24] YONEDA K, HIROSE S. Three-dimensional stability criterion of integrated locomotion and manipulation[J]. Journal of Robotics and Mechatronics, 1997, 9(4):267-274.
[25] CAI X, HE J, GAO F. Kinematic modeling and simulation of a leg-wheel robot for unexplored rough terrain environment[C]//IFToMM International Conference on Mechanisms, Transmissions and Appl-ications, 2020:464-473.
[26] HIRT C, CLAESSENS S J, KUHN M, et al. Kilometer-resolution gravity field of Mars:MGM2011[J]. Planetary & Space Science, 2012, 67(1):147-154.
文章导航

/