电子电气工程与控制

一种4站情况下基于TDOA/FDOA的无源定位方法

  • 国强 ,
  • 李文韬
展开
  • 哈尔滨工程大学 信息与通信工程学院, 哈尔滨 150001

收稿日期: 2020-05-18

  修回日期: 2020-07-02

  网络出版日期: 2020-08-07

基金资助

国家重点研发计划战略性国际科技创新合作重点专项(2018YFE0206500);国家自然科学基金(62071140)

Passive location method based on TDOA/FDOA in case of 4 receivers

  • GUO Qiang ,
  • LI Wentao
Expand
  • College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Received date: 2020-05-18

  Revised date: 2020-07-02

  Online published: 2020-08-07

Supported by

National Key Research and Development Scheme Strategic/Intergovernmental International Cooperation in Science and Technology Innovation Program(2018YFE0206500);National Natural Science Foundation of China(62071140)

摘要

在基于时频差的三维运动目标无源定位系统中,针对在4个接收站的情况下搜索法实时性低的问题,提出了一种基于改进的加权最小二乘法(MWLS)与萤火虫算法(FA)相结合的无源定位方法(MWLS-FA)。该方法的第1步通过构造一组新的方程来对加权最小二乘(WLS)方法进行改进,使得改进后的WLS方法在4站情况下也能得到目标位置和速度的初始值,第2步利用这个初始值为FA方法提供一个动态的搜索区域,同时在约束条件的添加和参数选择两个方面针对性地对FA方法做出了调整和改进。仿真结果表明,该方法在4站情况下对目标的定位精度可以达到克拉美罗下限(CRLB),而且在实时性和抗噪性方面优于传统的搜索法,同时该方法在5站情况下的抗噪性能优于两步加权最小二乘法(TSWLS)和约束加权最小二乘(CWLS)法。

本文引用格式

国强 , 李文韬 . 一种4站情况下基于TDOA/FDOA的无源定位方法[J]. 航空学报, 2021 , 42(2) : 324236 -324236 . DOI: 10.7527/S1000-6893.2020.24236

Abstract

A new joint location method (MWLS-FA), combining the Modified Weighted Least Squares (MWLS) method and the Firefly Algorithm (FA), is proposed to solve the poor timeliness problem in the case of 4 receivers in the three-dimensional moving target passive location system based on Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA). This method first modifies the Weighted Least Squares (WLS) method by constructing a new set of equations, such that the MWLS method can also obtain the initial values of the target position and velocity in the case of 4 receivers. Then, this initial value is used to provide a dynamic search area for the FA method which is also adjusted and improved in adding constraints and selecting parameters. Simulation results show that the accuracy of the proposed method can reach the Cramer-Rao Lower Bound (CRLB), and is remarkably better than the traditional search methods in terms of timeliness and noise resistance. Meanwhile, the accuracy of this method is superior to Two-Step Weighted Least Squares (TSWLS) and Constrained Weighted Least Squares (CWLS) in the case of 5 receivers.

参考文献

[1] 周成, 黄高明, 单鸿昌. 基于最大似然估计的TDO-A\\FDOA无源定位偏差补偿算法[J]. 航空学报, 2015,36(3):979-986. ZHOU C, HUANG G M, SHAN H C, et al. Bias compensation algorithm based on maximum likelihood estimation for passive localization using TDOA and FDOA measurements[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):979-986(in Chinese).
[2] 徐征, 曲长文, 王昌海. 系统误差条件下的多运动站无源定位性能分析[J]. 航空学报, 2013, 34(3):629-635. XU Z, QU C W, WANG C H. Performance analysis for multiple moving observers passive localization in the presence of systematic errors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):629-635(in Chinese).
[3] WEINSTEIN E. Optimal source localization and tracking from passive array measurements[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1982, 30(1):69-76.
[4] GUSTAFSSON T, RAO B D, TRIVEDI M. Source localization in reverberant environments:Modeling and statistical analysis[J]. IEEE Transactions on Speech & Audio Processing, 2003, 11(6):791-803.
[5] 王伟, 王咸鹏, 马跃华. 基于多级维纳滤波的双基地MIMO雷达多目标定位方法[J]. 航空学报, 2012,33(7):1281-1288. WANG W, WANG X P, MA Y H. Multi-target localization based on multi-stage wiener filter for bistatic MIMO radar[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1281-1288(in Chinese).
[6] STOCIA P, LI J. Lecture notes-source lozalization from range-difference measurements[J]. IEEE Signal Processing Magazine, 2006, 23(6):63-66.
[7] WANG C, QI F, SHI G, et al. A linear combination based weighted least square approach for target localization with noisy range measurements[J]. Signal Processing, 2014, 94:202-211.
[8] GRIFFIN A, ALEXANDRIDIS A, PAVLIDI D, et al. Localizing multiple audio sources in a wireless acoustic sensor network[J]. Signal Processing, 2015, 107:54-67.
[9] FOY W H. Position-location solutions by Taylor-Series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(2):187-194.
[10] YANG K, JIANG L, LUO Z Q. Efficient semidefinite relaxation for robust geolocation of unknown emitter by a satellite cluster using TDOA and FDOA measurements[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2011:2584-2587.
[11] WANG G, LI Y, ANSARI N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2):853-862.
[12] HO K C, XU W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9):2453-2463.
[13] HO K C, LU X, KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors:Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2):684-696.
[14] 刘洋, 杨乐, 郭福成, 等. 基于定位误差修正的运动目标TDOA/FDOA无源定位方法[J]. 航空学报, 2015, 36(5):1617-1626. LIU Y, YANG L, GUO F C, et al. Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1617-1626(in Chinese).
[15] YU H, HUANG G, GAO J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(1):44-47.
[16] 孙霆, 董春曦, 董阳阳, 等. 一种基于观测站数目最小化的TDOA/FDOA无源定位算法[J]. 航空学报, 2019, 40(9):322902. SUN T, DONG C X, DONG Y Y, et al. A TDOA/FD-OA passive location algorithm with the minimum number of stations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):322902(in Chinese).
[17] AZIZ M A E. Source localization using TDOA and FDOA measurements based on modified cuckoo search algorithm[J]. Wireless Networks, 2015, 23(2):487-495.
[18] 蒋伊琳, 刘梦楠, 郜丽鹏, 等. 运动多站无源时差/频差联合定位方法[J]. 系统工程与电子技术, 2019, 41(7):1441-1449. JIANG Y L, LIU M N, GAO L P, et al. Joint passive location method of TDOA and FDOA for moving multi station[J]. Systems Engineering and Electronics, 2019, 41(7):1441-1449(in Chinese).
[19] STEIN S. Algorithms for ambiguity function processing[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(3):588-599.
[20] YANG X S. Firefly algorithm, stochastic test functions and design optimisation[J]. International Journal of Bio Inspired Computation, 2010, 2(2):78-84.
[21] GANDOMI A H, YANG X S, ALAVI A H. Mixed variable structural optimization using firefly algorithm[J]. Computers & Structures, 2011, 89(23-24):2325-2336.
[22] HORNG M H. Vector quantization using the firefly algorithm for image compression[J]. Expert Systems with Applications, 2012, 39(1):1078-1091.
[23] SENTHILNATH J, OMKAR S N, MANI V. Clustering using firefly algorithm:Performance study[J]. Swarm and Evolutionary Computation, 2011, 1(3):164-171.
[24] RASHEED K. An adaptive penalty approach for constrained genetic algorithm optimization[C]//Processing 3rd Annual Conference on Genetic Programming. San Francisco:Morgan Kaufmann, 1998:584-590.
[25] 卓宏明, 陈倩清. 萤火虫算法参数分析与优化[J]. 信息技术与网络安全, 2019, 38(11):60-66. ZHUO H M, CHEN Q Q. Analysis and optimization of firefly algorithm parameters[J]. Information Technology and Network Security, 2019, 38(11):60-66(in Chinese).
文章导航

/