This paper focuses on multiple Line-of-Sight (LOS) angles-only relative navigation of multiple collaborative space robots for non-cooperative targets. To improve the relative navigation performance by fusing multi-LOS information, we propose a multi-LOS relative navigation method based on observability optimization. A relative dynamic model and a state equation between the center robot and the non-cooperative target as well as the observation equation of the multi-robot LOS are firstly developed, and the multi-LOS angles-only relative navigation system is then studied. After that, the angle condition of the multi-LOS with optimal observability is obtained, and a method for the observation configuration optimization of multiple space robots is proposed, considering the observability and long-term natural maintenance. Finally, the simulation results show that the method can significantly improve the range state observability and estimation performance, therefore having good application prospect in space missions.
[1] LORENZO O, ALESSANDRO F. Large constellations assessment and optimization in LEO space debris environment[J]. Advances in Space Research, 2020, 65:351-363.
[2] PARDINI C, ANSELMO L. Environmental sustainability of large satellite constellations in low earth orbit[J]. Acta Astronautica, 2020,170:27-36.
[3] MORIN J. Four steps to global management of space traffic[J]. Nature, 2019, 567:25-27.
[4] WOFFINDEN D C, GELLER D K. Observability criteria for angles-only navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3):1194-1208.
[5] GELLER D K, KLEIN I. Angles-only navigation state observability during orbital proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1976-1983.
[6] BODIN P, NOTEBORN R, LARSSON R, et al. The Prisma formation flying demonstrator:Overview and conclusions from the nominal mission[J]. Advances in the Astronautical Sciences, 2012, 144:441-460.
[7] ARDAENS J S, GAIAS G, Angles-only relative orbit determination in low earth orbit[J/OL]. Advances in Space Research, (2017-10-08)[2018-03-10]. http://doi.org/10.1016/j.asr.2018.03.016.
[8] 尤岳. 空间碎片清除仅测角相对导航与机动规划[D]. 长沙:国防科技大学, 2017:127-131. YOU Y. Study on angles-only relative navigation and maneuver planning in space debris removal[D]. Changsha:National University of Defense Technology, 2017:127-131(in Chinese).
[9] FRANQUIZ F J, MUNOZ J D,UDRE B, et al. Optimal range observability maneuvers of a spacecraft formation using angles-only navigation[J]. Acta Astronautica,2018,153:337-348.
[10] LUO J J, GONG B C, YUAN J P, et al. Angles-only relative navigation and closed-loop guidance for spacecraft proximity operations[J]. Acta Astronautica, 2016, 128:91-106.
[11] GELLER D K, PEREZ A. Initial relative orbit determination for close-in proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1833-1842.
[12] GONG B C, LI W D, LI S, et al. Angles-only initial relative orbit determination algorithm for noncooperative spacecraft proximity operations[J]. Astrodynamics, 2018, 2(3):217-231.
[13] GONG B C, GELLER D K, LUO J J. Initial relative orbit determination analytical covariance and performance analysis for proximity operations[J]. Journal of Spacecraft and Rockets, 2016, 53(5):822-835.
[14] GAIAS G, D'AMICO S, ARDAENS J S. Angles-only navigation to a noncooperative satellite using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2):439-451.
[15] 韩飞, 梁彦, 郭雯婷, 等. 一种用星上视线角度信息的相对导航方法:ZL 201110011003.1[P].2015-7-15. HAN F, LIANG Y, GUO W T, et al. A method of relative navigation using line-of-sight angles on satellite:ZL 201110011003.1[P].2015-7-15(in Chinese).
[16] GARG S K. Initial relative-orbit determination using second-order dynamics and line-of-sight measurements[D]. Alabam:Auburn University, 2015:152-183.
[17] PEREZ A C, GELLER D K, LOVELL T A. Non-iterative angles-only initial relative orbit determination with J2 perturbations[J]. Acta Astronautica, 2018, 151:146-159.
[18] LI F, CAO X B, YOU Y, et al. Case study:Feasibility analysis of close-in proximity operations using angles-only navigation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63(2):31-41.
[19] 李松,陈琪锋,钟日进. 不完整测量下集群飞行器协同相对定位方法[J].飞控与探测, 2019, 2(6):18-25. LI S, CHEN Q F, ZHONG R J. Collaborative relative positioning method for cluster aircraft under incomplete measurement[J]. Flight Control & Detection, 2019, 2(6):18-25(in Chinese).
[20] 高学海, 梁斌, 潘乐, 等. 高轨非合作目标多视线分布式相对导航方法[J]. 宇航学报, 2015, 36(3):292-299. GAO X H, LIANG B, PAN L, et al. Distributed relative navigation of GEO non-cooperative target based on multiple line-of-sight measurements[J]. Journal of Astronautics, 2015, 36(3):292-299(in Chinese).
[21] 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6):1084-1091. WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1084-1091(in Chinese).
[22] 王楷, 徐世杰, 黎康, 等. 双视线测量相对导航方法误差分析与编队设计[J]. 航空学报, 2018, 39(9):322014. WANG K, XU S J, LI K, et al. Error analysis and formation design for double line-of-sight measuring relative navigation method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):322014(in Chinese).
[23] CHEN T, XU S J. Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67:122-134.
[24] MORGAN D,CHUNG S J, BLACKMORE L,et al. Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations[J]. Journal of Guidance Control and Dynamics, 2012, 35(5):1492-1506.
[25] JAEHWAN P I, BANG H. Trajectory design for improving observability of angles-only relative navigation between two Satellites[J]. Journal of Astronautical Science, 2015,61(4):1-22.