论文

基于改进SWT模型的FGH96合金低周疲劳寿命预测

  • 肖阳 ,
  • 秦海勤 ,
  • 徐可君 ,
  • 贾明明 ,
  • 张柱柱
展开
  • 海军航空大学 青岛校区, 青岛 266041

收稿日期: 2020-06-02

  修回日期: 2020-06-15

  网络出版日期: 2020-08-03

基金资助

国家自然科学基金(51975580)

Low cycle fatigue life prediction of FGH96 alloy based on modified SWT model

  • XIAO Yang ,
  • QIN Haiqin ,
  • XU Kejun ,
  • JIA Mingming ,
  • ZHANG Zhuzhu
Expand
  • Qingdao Branch, Naval Aviation University, Qingdao 266041, China

Received date: 2020-06-02

  Revised date: 2020-06-15

  Online published: 2020-08-03

Supported by

National Natural Science Foundation of China (51975580)

摘要

针对SWT(Smith-Watson-Topper)模型未考虑材料对平均应力影响的灵敏度以及忽略平均应力对材料塑性变形影响的问题,利用材料的屈服强度和抗拉强度,对Walker指数γ的计算公式进行了改进,并将其引入到SWT模型中对损伤控制参数进行了修正。同时结合M-H(Manson-Halford)模型塑性部分平均应力修正方法对SWT模型中的塑性变形参数进行了修正,从而提出了一种基于改进SWT模型的FGH96粉末高温合金低周疲劳寿命预测方法。利用不同材料的γ试验计算值对改进的Walker指数计算方法进行了验证,计算平均相对误差为10.25%。并利用FGH96合金和其他航空发动机材料的低周疲劳试验数据,对改进SWT模型的寿命预测精度及适用范围进行了评估,并与M-H、SWT和Lv模型进行了对比。结果表明,改进SWT模型对不同材料的预测结果基本位于±2倍分散带之内,其寿命预测能力要高于其他3种模型。

本文引用格式

肖阳 , 秦海勤 , 徐可君 , 贾明明 , 张柱柱 . 基于改进SWT模型的FGH96合金低周疲劳寿命预测[J]. 航空学报, 2021 , 42(5) : 524360 -524360 . DOI: 10.7527/S1000-6893.2020.24360

Abstract

To solve the problems that Smith-Watson-Topper (SWT) model does not consider the sensitivity of material to the mean stress and ignores the effect of the mean stress on plastic deformation, we improved the computing method of the Walker exponent γ based on the yield strength and tensile strength, and modified the damage control parameter of the SWT model using the improved Walker exponent. Meanwhile, based on the Manson-Halford (M-H) model, the plastic deformation parameter of the SWT model was modified with the mean stress. Then an Low Cycle Fatigue (LCF) life prediction method for the FGH96 powder metallurgy superalloy was proposed based on the improved SWT model. The improved computing method of the Walker exponent was verified using the experimental calculation values of different materials, and the average relative error of calculation is 10.25%. The experimental data of the FGH96 alloy and other aero-engine materials show that the improved SWT model can provide better prediction than the M-H, SWT and Lv models, with nearly all the predicted results within ±2 times the scatter band.

参考文献

[1] 徐燊, 朱顺鹏, 郝永振, 等. 基于临界面-损伤参量法的高压涡轮盘多轴疲劳寿命预测[J]. 航空学报, 2018, 39(9):221930. XU S, ZHU S P, HAO Y Z, et al. Multiaxial fatigue life prediction of an HPT disc based on critical plane-damage parameter[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):221930(in Chinese).
[2] 冯引利. 考虑表面加工状态的FGH96盘LCF寿命及破裂转速分析方法研究[D]. 南京:南京航空航天大学, 2017:1-2. FENG Y L. Research on analysis method for FGH96 disc's LCF life and burst speed considering surface machining status[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:1-2(in Chinese).
[3] 北京航空材料研究院. 航空材料技术[M]. 第1版. 北京:航空工业出版社, 2013:107-108. Beijing Institute of Aeronautical Materials. Materials technology of aeronautics[M]. 1 st ed. Beijing:Aviation Industry Press, 2013:107-108(in Chinese).
[4] TRESA M P, SAMMY T. Nickel-based superalloys for advanced turbine engines:chemistry, microstructure, and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-373.
[5] 詹志新, 佟阳, 李彬恺, 等. 考虑冲击缺陷的钛合金板的疲劳寿命预估[J]. 航空学报, 2016, 37(7):2200-2207. ZHAN Z X, TONG Y, LI B K, et al. Fatigue life prediction of titanium plate considering impact defect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2200-2207(in Chinese).
[6] LIU C L. Reliability analysis for an aero engine turbine disk under low cycle fatigue condition[J]. Acta Metallurgica Sinica, 2009, 17(4):514-520.
[7] GAN L P, HUANG H Z, ZHU S P, et al. Fatigue reliability analysis of turbine disk alloy using saddle point approximation[J]. International Journal of Turbo & Jet-Engines, 2013, 30(3):217-229.
[8] 冯引利, 吴长波, 郜伟强, 等. FGH96涡轮盘低循环疲劳寿命分析技术与试验[J]. 航空动力学报, 2012, 27(3):628-634. FENG Y L, WU C B, GAO W Q, et al. Analysis technology and experiment for FGH96 disc's LCF life[J]. Journal of Aerospace Power, 2012, 27(3):628-634(in Chinese).
[9] COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers, 1954, 74:931-950.
[10] MORROW J D. Fatigue design handbook[M]. 1 st ed. New York:SAE Advances in Engineering, 1968:21-29.
[11] MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17:169-172.
[12] SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5:767-778.
[13] GATES N R, FATEMI A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis[J]. International Journal of Fatigue, 2017, 100:322-336.
[14] ZHU S P, LEI Q, WANG Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9):1343-1354.
[15] 丁如昌. 航空发动机涡轮盘疲劳可靠性建模和分析[D]. 成都:电子科技大学, 2019:29-30. DING R C. Study on fatigue reliability modeling and analysis of turbine disk of an aero-engine[D]. Chengdu:University of Electronic Science and Technology of China, 2019:29-30(in Chinese).
[16] 吴志荣, 胡绪腾, 宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报, 2013, 49(2):59-66. WU Z R, HU X T, SONG Y D. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering, 2013, 49(2):59-66(in Chinese).
[17] 吕志强. 航空发动机轮盘低周疲劳寿命预测方法研究[D]. 成都:电子科技大学, 2012:35-48. LV Z Q. Research on low cycle fatigue life prediction methodology of aero-engine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2012:35-48(in Chinese).
[18] LV Z Q, HUANG H Z, WANG H K, et al. Determining of the walker exponent and a modified SWT parameter model[J]. Journal of Mechanical Science and Technology, 2016, 30(3):1129-1137.
[19] WEHNER T, FATEMI A. Effects of mean stress on fatigue behavior of a hardened carbon steel[J]. International Journal of Fatigue, 1991, 13(3):241-248.
[20] MADDOX S J. The effect of mean stress on fatigue crack propagation a literature review[J]. International Journal of Fracture, 1975, 11(3):389-408.
[21] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[J]. American Society for Testing and Materials, 1970, 462(1):1-14.
[22] 周杰. 航空发动机涡轮叶片疲劳寿命及可靠性分析[D]. 成都:电子科技大学, 2019:15-18. ZHOU J. Fatigue life prediction and reliability analysis of aero-engine turbine blades[D]. Chengdu:University of Electronic Science and Technology of China, 2019:15-18(in Chinese).
[23] 王延荣, 李宏新, 袁善虎, 等. 考虑应力梯度的缺口疲劳寿命预测方法[J]. 航空动力学报, 2013, 28(6):1208-1214. WANG Y R, LI H X, YUAN S H, et al. Method for notched fatigue life prediction with stress gradient[J]. Journal of Aerospace Power, 2013, 28(6):1208-1214(in Chinese).
[24] 张智胜. 航空发动机涡轮盘疲劳寿命预测与动态可靠性分析[D]. 成都:电子科技大学, 2014:41-42. ZHANG Z S. Life prediction and dynamic reliability analysis of aircraft turbine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2014:41-42(in Chinese).
[25] WANG Y R, WANG X C, ZHONG B, et al. Estimation of fatigue parameters in total strain life equation for powder metallurgy superalloy FGH96 and other metallic materials[J]. International Journal of Fatigue, 2019, 122:116-124.
[26] 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册(第五册)[M]. 第1版. 北京:航空工业出版社, 2014:151-286. Material Data Handbook of Aircraft Design Committee. Material data handbook of aircraft design (the fifth book)[M]. 1 st ed. Beijing:Aviation Industry Press, 2014:151-286(in Chinese).
文章导航

/