[1] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京:高等教育出版社, 2011:86-169. TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. Beijing:Higher Education Press, 2011:86-169(in Chinese).
[2] 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2014, 36(1):58-85. WU Z N, BAI C J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astonautica Sinica, 2014, 36(1):58-85(in Chinese).
[3] RICHTMYER R D, MORTON K W. Difference methods for initial-value problems[M]. New York:Interscience, 1958:90-230.
[4] HARTEN A. High resolution schemes for hyperbolic conservation law[J]. Journal of Computational Physics, 1983, 49:357-393.
[5] YEE H C, KLOPFER G H, MONTAGNE J L. High resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J]. Journal of Computational Physics, 1990, 88:31-61.
[6] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1987, 71:231-303.
[7] LIU X D, OHSER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115:217-237.
[8] 张涵信. 无震荡无自由参数耗散差分格式[J]. 空气动力学学报, 1988, 2:143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamics Sinica, 1988, 2:143-165(in Chinese).
[9] SALAS M D. A shock-fitting primer[M]. New York:CRC Press, 2009:33-34.
[10] LEE T K, ZHONG X L. Spurious numerical oscillations in simulation of supersonic flow using shock-capturing schemes[J]. AIAA Journal, 1999, 37:383-394.
[11] MORETTI G. Thirty-six years of shock-fitting[J]. Computer & Fluids, 2002, 31:719-723.
[12] PARPIA I H, PARIKH P. A solution-adaptive mesh generation method with cell-face orientation control[C]//Aerospace Sciences Meeting and Exhibit,1994-416, 1994:1-13.
[13] ROSENDALE J V. Floating shock fitting via Lagrangian adaptive meshes:Report No. 94-89[R]. Hampton, VA:NASA Langley Research Center,1994.
[14] TREPANIER J Y,REGGIO M,CAMARERO R, et al. A conservative shock fitting method on unstructured grids[J]. Journal of Computational Physics, 1996, 126(2):421-433.
[15] ZAHR M J, PERSSON P O. An optimization based discontinuous Galerkin approach for high-order accurate shock tracking[C]//AIAA SciTech Forum. Reston:AIAA, 2018:1-11.
[16] ZAHR M J, PERSSON P O. An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions[J]. Journal of Computational Physics, 2018, 365:105-134.
[17] MIRHOSEINI M, PERSSON P O, ZAHR M J. A full space solver for optimization-based, high-order shock tracking using a discontinuous Galerkin discretization[C]//AIAA SciTech Forum. Reston:AIAA, 2019:1-9.
[18] CORRIGAN A, KERCHER A D, KESSLER D A. A moving discontinuous Galerkin finite element method for flows with interfaces[J]. International Journal for Numerical Methods in Fluids, 2019, 89:362-406.
[19] CORRIGAN A T, KERCHER A D, KESSLER D A, et al. Application of the moving discontinuous Galerkin method with interface condition enforcement to shocked compressible flows[C]//AIAA AVIATION Forum. Reston:AIAA, 2018:1-10.
[20] CORRIGAN A T, KERCHER A D, KESSLER D A. The moving discontinuous Galerkin method with interface condition enforcement for unsteady three-dimensional flows[C]//AIAA SciTech Forum. Reston:AIAA, 2019:1-13.
[21] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38:715-726.
[22] BONFIGLIOLI A, PACIORRI R. Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids[J]. AIAA Journal, 2014, 52(7):1404-1416.
[23] PACIORRI R, BONFIGLIOLI A. Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique[J]. Journal of Computational Physics, 2011, 230:3155-3177.
[24] 邹东阳, 刘君, 邹丽. 可压缩流动激波装配在格心型有限体积中的应用[J]. 航空学报, 2017, 38(12):121363. ZOU D Y, LIU J, ZOU L. Applications of the shock-fitting technique for compressible flow in cell-centered finite volume methods[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121363(in Chinese).
[25] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J]. Journal of Computational Physics, 2017, 345:866-882.
[26] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配方法[J]. 空气动力学学报, 2015, 1:10-16. LIU J, ZOU D Y, XU C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamics Sinica, 2015, 1:10-16(in Chinese).
[27] 刘君, 邹东阳, 董海波. 动态间断装配法模拟激波壁面反射[J]. 航空学报, 2016, 37(3):836-846. LIU J, ZOU D Y, DONG H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
[28] 常思源, 白晓征, 崔小强, 等. 一种改进的非定常激波装配方法[J]. 航空学报, 2020, 41(2):123498. CHANG S Y, BAI X Z, CUI X Q, et al. An improved unsteady shock-fitting algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2) 123498(in Chinese).
[29] 刘君, 陈洁, 韩芳. 基于离散等价方程的非结构网格有限差分法[J]. 航空学报, 2020, 41(1):123248. LIU J, CHEN J, HAN F. Finite difference method for unstructured grid based on discrete equivalent equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese).
[30] BONFIGLIOLI A, GROTTADAUREA M, PACIORRI R, et al. An unstructured, three-dimensional, shock-fitting solver for hypersonic flows[J]. Computers & Fluids, 2013,73:162-174.
[31] 刘君, 徐春光, 白晓征. 有限体积法和非结构动网格[M]. 北京:科学出版社, 2016:42-163. LIU J, XU C G, BAI X Z. Finite volume methods and unstructured dynamic grids technique[M]. Beijing:Science Press, 2016:42-163(in Chinese).
[32] HOUMTMAN E M, BANNINK W J, TIMMERMAN B H. Experimental and numerical investigation of the high-supersonic flow around an axi-symmetric blunt cylinder-flare model[C]//Proceedings of the 2nd European Symposium on Aerothermodynamics for Space Vehicles, 1995:517-522.