固体力学与飞行器总体设计

基于分岔理论的起落架撑杆式锁机构设计

  • 杨易鑫 ,
  • 印寅 ,
  • 聂宏 ,
  • 魏小辉
展开
  • 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016

收稿日期: 2020-03-11

  修回日期: 2020-07-02

  网络出版日期: 2020-08-03

基金资助

国家自然科学基金(51805249);江苏省自然科学基金(BK20180436);中央高校基本科研业务费专项资金(NF2018001);江苏高校优势学科建设工程资助项目

Strut locking mechanism design for landing gear based on bifurcation theory

  • YANG Yixin ,
  • YIN Yin ,
  • NIE Hong ,
  • WEI Xiaohui
Expand
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-03-11

  Revised date: 2020-07-02

  Online published: 2020-08-03

Supported by

National Natural Science Foundation of China (51805249); Natural Science Foundation of Jiangsu Province (BK20180436); Fundamental Research Funds for the Central Universities (NF2018001); Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

提出了运用分岔理论研究锁机构性能问题的分析方法,以前起落架上下位一体式锁机构为对象,基于分岔理论,通过数值延拓,研究了收放作动筒和解锁作动筒对该机构稳定性能的影响,阐释了锁机构运动分岔图中分岔点与上锁、解锁行为的对应关系,并分别针对上、下位解锁过程按照不同解锁力共划分了5种锁机构解锁状态。论述了延拓解锁、上锁分岔点得到的轨迹曲线,并根据曲线临界尖点定义了临界解锁力和临界解锁角度2个状态变量,随后分析了弹簧刚度、原长和安装点位置对以上变量的影响趋势。基于影响分析结果,在锁机构上锁能力一定的前提下,改变参数,优化了下位临界解锁力。研究表明,分岔分析能够快速全面地把握锁机构动力学特性随不同参数的变化趋势,在分析锁机构性能、指导参数初步设计方面有一定优势。

本文引用格式

杨易鑫 , 印寅 , 聂宏 , 魏小辉 . 基于分岔理论的起落架撑杆式锁机构设计[J]. 航空学报, 2020 , 41(11) : 223958 -223958 . DOI: 10.7527/S1000-6893.2020.23958

Abstract

An analytical method is presented to study the performance of a locking mechanism using bifurcation theory. Taking the combined uplock/downlock mechanism of a nose landing gear as the research object, the effects of the retractable and unlocked actuator on the stability of the mechanism are studied by numerical continuation based on the bifurcation theory. The correspondence relationship between bifurcation points and the locking/unlocking behavior in bifurcation diagrams is explained. According to different unlock actuator forces, five unlocking states of the lock mechanism are divided for the up/down unlocking process. The loci of the unlocking/locking bifurcation points are obtained through numerical continuation. After defining the critical unlocking force/angle according to the cusp bifurcation points of the loci, we analyze the influence of spring stiffness, original length and installation position on the preceding variables. Finally, optimization of the critical up unlocking force is conducted with a constraint on the initial over-center angle. The results show that bifurcation analysis can quickly and comprehensively grasp the changing trend of dynamic characteristics with different parameters, exhibiting certain advantages in analyzing the performance of locking mechanism and guiding the preliminary design of parameters.

参考文献

[1] 飞机设计手册总编委会. 飞机设计手册第14册起飞着陆系统设计[M]. 北京:航空工业出版社, 2002:476-483. Aircraft Design Manual Editor-in-Chief. Aircraft design manual volume 14 take-off and landing system design[M]. Beijing:Aviation Industry Press, 2002:476-483(in Chinese).
[2] CURREY N S. Aircraft landing gear design:Principle and practice[M]. Reston:AIAA, 1988:55-60.
[3] 张琪昌,王洪礼,竺致文. 分岔与混沌理论及应用[M]. 天津:天津大学出版社, 2005:36-42. ZHANG Q C, WANG H L, ZHU Z W. Theory and application of bifurcation and chaos[M] Tianjin:Tianjin University Press, 2005:36-42(in Chinese).
[4] STROGATZ S H. Nonlinear dynamics and chaos[M]. Abingdon:Taylor and Francis, 2018:44-50.
[5] YIN Y, HONG N, NAN H J, et al. Reliability analysis of landing gear retraction system influenced by multifactors[J]. Journal of Aircraft, 2016, 53(3):713-724.
[6] YIN Y, HONG N, WEI X H, et al. Fault analysis and solution of an airplane nose landing gear's emergency lowering[J]. Journal of Aircraft, 2016, 53(4):1022-1032.
[7] 马颖,宁晓东,袁理. 可折撑杆锁设计研究[C]//第六届中国航空学会青年科技论坛论文集. 北京:中国航空学会, 2014:391-396. MA Y, NING X D, YUAN L. Study on the design of foldable drag lock[C]//Proceedings of the 6th China Aeronautical Society Youth Science and Technology Forum. Beijing:Chinese Society of Aeronautics and Astronautics, 2014:391-396(in Chinese).
[8] YIN Y, XU K, NIE H, et al. Research on the performance of an aircraft landing gear hook lock based on bifurcation analysis[J]. Applied Sciences, 2019, 9(24):5278.
[9] KRAUSKOPF B, OSINGA H M. Numerical continuation methods for dynamical systems[M]. Amsterdam:Springer, 2007:18-22.
[10] SCHILDER F, DANKOWICZ H. Recipes for continuation[M]. Philadelphia:Society for Industrial and Applied Mathematics, 2013:25-30.
[11] SHARMA S, COETZEE E B, LOWENBERG M H, et al. Numerical continuation and bifurcation analysis in aircraft design:an industrial perspective[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373:2051.
[12] TERKOVICS N, NEILD S, LOWENBERG M, et al. Bifurcation analysis of a coupled nose-landing-gear-fuselage system[J]. Journal of Aircraft, 2014, 51(1):259-272.
[13] THOTA P, KRAUSKOPF B, LOWENBERG M, et al. Influence of tire inflation pressure on nose landing gear shimmy[J]. Journal of Aircraft, 2010, 47(5):1697-1706.
[14] 陈大伟. 起落架摆振的非线性分析及控制[D]. 南京:南京航空航天大学, 2012:32-39. CHEN D W. Nonlinear analysis and control of landing gear shimmy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:32-39(in Chinese).
[15] COETZEE E. Modelling and nonlinear analysis of aircraft ground manoeuvres[D]. Bristol:University of Bristol, 2011:30-40.
[16] RANKIN J, COETZEE E, KRAUSKOPF B, et al. Nonlinear ground dynamics of aircraft:bifurcation analysis of turning solutions[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2008.
[17] DOEDEL E J, FAIRGRIEVE T F, SANDSTEDE B, et al. AUTO-07P:Continuation and bifurcation software for ordinary differential equations[M]. Montreal:Concordia University Press, 2012:18-21.
[18] CHARLES G, LOWENBERG M, STOTEN D, et al. Aircraft flight dynamics analysis and controller design using bifurcation tailoring[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[19] PARANJAPE A, SINHA N, ANANTHKRISHNAN N. Use of bifurcation and continuation methods for aircraft trim and stability analysis-a state-of-the-art[C]//Collection of Technical Papers-45Th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2007:18.
[20] KNOWLES J A C. Bifurcation study of a dynamic model of a landing gear mechanism[J]. Journal of Aircraft, 2016, 53(5):1468-1477.
[21] KNOWLES J A C, KRAUSKOPF B, LOWENBERG M H, et al. Numerical continuation analysis of a dual-sidestay main landing gear mechanism[J]. Journal of Aircraft, 2014, 51(1):129-143.
[22] KNOWLES J A C, KRAUSKOPF B, LOWENBERG M H. Numerical continuation applied to landing gear mechanism analysis[J]. Journal of Aircraft, 2011, 48(4):1254-1262.
[23] KNOWLES J A C, LOWENBERG M H, NEILD S A, et al. A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism[J]. Proceedings of the Royal Society a:Mathematical, Physical and Engineering Sciences, 2014, 470(2172):20140332.
[24] YIN Y, NEILD S A, JIANG J Z, et al. Optimization of a main landing gear locking mechanism using bifurcation analysis[J]. Journal of Aircraft, 2017, 54(6):2126-2139.
[25] KNOWLES J. Continuation analysis of landing gear mechanisms[D]. Bristol:University of Bristol, 2012:23-27.
文章导航

/