流体力学与飞行力学

高超声速流动中噪声与湍流度的关系

  • 袁湘江 ,
  • 沙心国 ,
  • 时晓天 ,
  • 高军
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2020-01-01

  修回日期: 2020-04-06

  网络出版日期: 2020-08-03

基金资助

国家重点研发计划(2019YFA0405300);国家自然科学基金(11872348,11802297)

Noise-turbulence relationship in hypersonic flow

  • YUAN Xiangjiang ,
  • SHA Xinguo ,
  • SHI Xiaotian ,
  • GAO Jun
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2020-01-01

  Revised date: 2020-04-06

  Online published: 2020-08-03

Supported by

National Key R&D Program of China(2019YFA0405300); National Natural Science Foundation of China (11872348, 11802297)

摘要

在不可压缩流动中,湍流度对流动失稳与转捩的影响机制有很多研究成果,已发展了一些依据其大小预测流动转捩的模型应用于工程设计。但在高速可压缩流动中,湍流度很难测量,给该速域的流动转捩预测建模带来困难。近年来的研究表明,高速流场(马赫数≥3)中的噪声是影响流动转捩提前与推迟,甚至决定转捩途径的关键因素。但流场噪声与湍流度对流场的激励机制有没有内在联系,或流场噪声与湍流度理论上是否存在相互关联,迄今仍缺少理论分析结果。由于可压缩流场中噪声的测量相对容易,因此探讨流场噪声与湍流度之间的定量关系具有重要的理论意义和实用价值。讨论了Euler系统中各类双曲波特性,重点分析了流场声波中脉动压力与脉动速度的本质联系,从理论上得到了声压级与声致湍流度的关系。同时,为了对影响湍流度的因素有更全面的认识,导出了非声扰动与非声致湍流度的关系。为建立高速流动转捩预测模型和探讨天地一致性问题,奠定了一定的研究基础。

本文引用格式

袁湘江 , 沙心国 , 时晓天 , 高军 . 高超声速流动中噪声与湍流度的关系[J]. 航空学报, 2020 , 41(11) : 123791 -123791 . DOI: 10.7527/S1000-6893.2020.23791

Abstract

Extensive research on the influence of turbulence intensity on flow instability and boundary layer transition in incompressible flow has been conducted, resulting in the development and engineering application of some prediction models for boundary layer transition based on turbulence intensity. However, turbulence intensity is not easy to measure in compressible high-speed flow, posing significant difficulties in boundary layer transition prediction. Previous experimental results demonstrate that the noise level in high-speed flow (Mach number≥3) is one of the key factors affecting the boundary layer transition location and path. However, no theoretical conclusions have been drawn so far as to whether a relationship between the noise level and the turbulence intensity exists. Compared to the turbulence intensity, the noise level measurement is relatively easier in the high speed flow. Therefore, it is of theoretical significance and practical value to explore the quantitative relationship between the noise level and the turbulence intensity in the flow field. Typical disturbance waves in Euler’s system are discussed, focusing on the analysis of the essential correlation between the pressure fluctuations and velocity fluctuations. The theoretical relationships between the sound pressure level, the velocity curl and the turbulence intensity are derived, which is conducive to the establishment of a prediction model for high-speed boundary-layer transition and the exploration of the aerodynamic data correlation between flight and ground tests.

参考文献

[1] 周恒, 张涵信. 号称经典物理留下的世纪难题"湍流问题"的实质是什么?[J] 中国科学:物理学力学天文学, 2012, 42(1):1-5. ZHOU H, ZHANG H X. What is the essence of the so-called century lasting difficult problem in classic physics, the "problem of turbulence"?[J] Science China:Physics, Mechanics & Astronomy, 2012, 42(1):1-5(in Chinese).
[2] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003,35(1):413-440.
[3] RESHOTKO E. Boundary-layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976,8(1):311-349.
[4] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报,2017,35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition:What we know, where shall we go[J]. Acta Aerodynamica Sinica,2017, 35(3):311-337(in Chinese).
[5] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723. XIE S F, YANG W B, SHEN Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J].Acta Aeronautica et Astronautica Sinica, 2015,36(3):714-723(in Chinese).
[6] 沈清, 袁湘江, 王强, 等. 可压缩边界层与混合层失稳结构的研究进展及其工程应用[J].力学进展, 2012, 42(3):252-261. SHEN Q, YUAN X J, WANG Q, et al. Review on the instability structure in compressible boundary layers and mixing layers and its application[J]. Advances in Mechanics, 2012, 42(3):252-261(in Chinese).
[7] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J].空气动力学学报, 2018, 36(2):183-195. YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2):183-195(in Chinese).
[8] TOLLMIEN W. Über die entstehung der turbulenz.1.Mitteilung[J]. Nachrichten von der Gesellschaft der Wissschaften zu Cöttingen. Mathematisch-Physikalische Klasse, 1929:21-44.
[9] SCHLICHTING H. Zur enstehung der turbulenz bei der plattenstroimung[J]. Nachrichten von der Gesellschaft der Wissschaften zu Cöttingen. Mathematisch-Physikalische Klasse, 1933:181-208.
[10] DRYDEN H I. Transition from laminar to turbulent flow at subsonic and supersonic speeds[C]//Proceedings of the Conference on High-Speed Aeronautics, 1955.
[11] SCHUBAUER G B, SKRAMSTAD H K. Laminar-boundary layer oscillations and transition on a flat plate:NACA 909[R]. Washington, D.C.:NACA,1948.
[12] MORKOVIN M V, RESHOTKO E, HERBERT T. Transition in open flow systems a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9):1882.
[13] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J].航空学报,2015,36(1):7-23. YU P,DUAN Y,CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica,2015, 36(1):7-23(in Chinese).
[14] 李锋, 杨武兵, 王强, 等. 高超声速气动试验模拟现状与面临的新挑战[J].气体物理,2016, 1(2):1-9. LI F, YANG W B, WANG Q, et al. Status of ground test for hypersonic aerodynamics and its new challenge[J]. Physics of Gases, 2016,1(2):1-9(in Chinese).
[15] 于登云. 新型航天器发展对力学学科的挑战[J].科学通报, 2015, 60:1085-1094. YU D Y. Mechanical challenges in advanced spacecraft development[J]. Chinese Science Bulletin, 2015, 60:1085-1094(in Chinese).
[16] BERTIN J J, CUMMINGS R M. Fifty years of hypersonics:where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003,39:511-536.
[17] BUSHNELL D M. Hypersonic flight experimentation status and shortfalls:AGARD CP-6000[R]. Paris:AGARD, 1997.
[18] SCHNEIDER S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft Rockets, 1999, 36(1):8-20.
[19] ESTORF M, RADESPIEL R, SCHNEIDER S P, et al. Surface-pressure measurements of second-mode instability in quiet hypersonic flow:AIAA-2008-1153[R]. Reston:AIAA, 2008.
[20] PATE S R, SCHUELER C J. An investigation of radiated aerodynamic noise effects on boundary-layer transition in supersonic and hypersonic wind tunnels[J]. AIAA Journal, 1969, 7(3):450-457.
[21] MASLOV A A, SHIPLYUK A N, SIDORENKO A A, et al. Leading edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426:73-94.
[22] 杜钰锋, 林俊, 马护生, 等.可压缩流湍流度变热线过热比测量方法[J].航空学报, 2017, 38(11):121236. DU Y F, LIN J, MA H S, et al. Measurement technique for turbulence level in compressible fluid by changing overheat ratio of hot-wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121236(in Chinese).
[23] KOVASZNAY L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9):565-572.
[24] LOGAN P. Modal analysis of hot-wire measurements in supersonic turbulence:AIAA-1988-0423[R]. Reston:AIAA, 1988.
[25] DUAN L, CHOUDHARI M M, CHOU A, et al. Characterization of freestream disturbances in conventional hypersonic wind tunnels:AIAA-2018-0347[R]. Reston:AIAA, 2018.
[26] BECHWITH J E, CREEL JR T R, CHEN F J, et al. Freestream noise and transition measurements on a cone in a Mach 3.5 pilot low-disturbance tunnel:NASA 2180[R]. Washington, D.C.:NASA, 1983.
[27] WAGNER A, SCHULEIN E, PETERVARI R, et al. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation[J]. Journal of Fluid Mechanics, 2018, 842:495-531.
[28] SMEETS G. Laser interferometer for high sensitivity measurements on transient phase objects[J]. IEEE Transactions on Aerospace and Electronic Systems,1972, AES-8(2):186-190.
[29] PARZIALE N J, SHEPHERD J E,HORNUNG H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal, 2013, 51(3), 750-753.
[30] 余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学, 2019,33(5):70-75. YU T, ZHANG W, ZHANG Y F, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019,33(5):70-75(in Chinese).
[31] LAUFER J. Factors affecting Reynolds numbers on models in supersonic wind transition tunnels[J]. Journal of the Aeronautical Sciences, 1954, 21(7):497-498.
[32] 解少飞. 高超声速激波/转捩边界层干扰的现象、机理和效应研究[D]. 北京:中国航天空气动力技术研究院, 2015. XIE S F. Study of phenomenon,mechanism and effect of hypersonic shock wave/transitional boundary layer interaction[D]. Beijing:China Academy of Aerospace and Aerodynamics, 2015(in Chinese).
文章导航

/