综述

可重复使用热防护材料应用与研究进展

  • 黄红岩 ,
  • 苏力军 ,
  • 雷朝帅 ,
  • 李健 ,
  • 张恩爽 ,
  • 李文静 ,
  • 杨洁颖 ,
  • 赵英民 ,
  • 裴雨辰 ,
  • 张昊
展开
  • 航天特种材料及工艺技术研究所, 北京 100074

收稿日期: 2019-12-09

  修回日期: 2020-02-04

  网络出版日期: 2020-08-03

Reusable thermal protective materials: application and research progress

  • HUANG Hongyan ,
  • SU Lijun ,
  • LEI Chaoshuai ,
  • LI Jian ,
  • ZHANG Enshuang ,
  • LI Wenjing ,
  • YANG Jieying ,
  • ZHAO Yingmin ,
  • PEI Yuchen ,
  • ZHANG Hao
Expand
  • Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, China

Received date: 2019-12-09

  Revised date: 2020-02-04

  Online published: 2020-08-03

摘要

可重复使用热防护系统是为高速重复使用飞行器而发展的关键性技术,涵盖了地球大气环境及非地球大气环境下的弹道式再入、高马赫数巡航等应用场景。根据现有高马赫数飞行器热防护现状,对高马赫数飞行器的主要热防护系统类型、特点和使用场景进行了简要介绍。在此基础上,结合国外里程碑式可重复使用飞行器(X-15、SR-71、航天飞机、X-33、X-37B、Spaceliner等),梳理了可重复使用热防护材料的应用与研究进展,论述了代表性可重复使用热防护材料的发展、性能、研制进度、特点及应用前景。对国外在可重复使用热防护材料研制中的设计及发展思路,以及所存在的主要问题进行了总结归纳,为可重复使用热防护材料未来的发展提供了思路。

本文引用格式

黄红岩 , 苏力军 , 雷朝帅 , 李健 , 张恩爽 , 李文静 , 杨洁颖 , 赵英民 , 裴雨辰 , 张昊 . 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020 , 41(12) : 23716 -023716 . DOI: 10.7527/S1000-6893.2020.23716

Abstract

Reusable Thermal Protection Systems (TPS) are the key technology required for a range of high speed vehicles from ballistic reentry to hypersonic cruise vehicles, within either the Earth atmosphere or non-Earth atmospheres. The main types, characteristics, and the application environment of thermal protection systems for high speed vehicles are briefly summarized based on the status quo of thermal protection strategies for high speed vehicles. The application and research progress of the reusable thermal protection materials for foreign milestone Reusable Launch Vehicles (RLVs) (e.g. X-15, SR-71, Space shuttle, X-33, X-37B, Spaceliner) are further reviewed, the development, material properties, research progress, material characteristics and application prospect of representative reusable thermal protection materials are discussed, and the design and development ideas of the reusable thermal protection materials and the existing problems are summarized. The future development of the reusable thermal protection materials is finally discussed.

参考文献

[1] ESSER B, BARCENA J, KUHN M, et al. Innovative thermal management concepts and material solutions for future space vehicles[J]. Journal of Spacecraft and Rockets, 2016, 53(6):1051-1061.
[2] GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicle:AIAA-2008-2682[R]. Reston:AIAA, 2008.
[3] BARBER T A, MAJDALANI J, MAICKE B A. Review of gaps, obstacles, and technological challenges in hypersonic applications[J]. International Journal of Energetic Materials and Chemical Propulsion, 2018, 17(1):13-55.
[4] MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators-overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3-9):619-630.
[5] JOHNSON S M, GASCH M, LAWSON J W. Recent developments in ultra high temperature ceramics at NASA AMES:AIAA-2009-7219[R]. Reston:AIAA, 2009.
[6] STEELANT J. ATLLAS:Aero-thermal loaded material investigations for high-speed vehicles:AIAA-2008-2582[R]. Reston:AIAA, 2008.
[7] MIYAGI H, MIYAGAWA H, MONJI T, et al. Combined cycle engine research in Japanese HYPR project:AIAA-1995-2751[R]. Reston:AIAA, 1995.
[8] KUMAR S, MAHULIKAR S P. Selection of materials and design of multilayer lightweight passive thermal protection system[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2):021003.
[9] HALD H, ORTELT M, FISCHER I. Effusion cooled CMC rocket combustion chamber:AIAA-2005-3229[R]. Reston:AIAA, 2005.
[10] DING R, WANG J, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146:422-431.
[11] JING T, HE G, LI W, et al. Flow and thermal analyses of regenerative cooling in non-uniform channels for combustion chamber[J]. Applied Thermal Engineering, 2017, 119:89-97.
[12] MYERS D E, MARTIN C J, BLOSSER M L. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems:NASA/TM-2000-210289[R]. Washington D.C.:NASA, 2000.
[13] YANG X H, TAN S C, DING Y J, et al. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins[J]. International Communications in Heat and Mass Transfer, 2017, 87:118-124.
[14] LANGSTON S L. Optimization of a hot structure aeroshell and nose cap for mars atmospheric entry:AIAA-2016-5594[R]. Reston:AIAA, 2016.
[15] BLET N, LIPS S, SARTRE V. Heats pipes for temperature homogenization:A literature review[J]. Applied Thermal Engineering, 2017, 118:490-509.
[16] RICCIO A, RAIMONDO F, SELLITTO A, et al. Optimum design of ablative thermal protection systems for atmospheric entry vehicles[J]. Applied Thermal Engineering, 2017, 119:541-552.
[17] 邢亚娟, 孙波, 高坤, 等. 航天飞行器热防护系统及防热材料研究现状[J]. 宇航材料工艺, 2018, 48(4):9-15. XING Y J, SUN B, GAO K, et al. Research status of thermal protection system and thermal protection materials for aerospace vehicles[J]. Aerospace Materials & Technology, 2018, 48(4):9-15(in Chinese).
[18] 王曼, 杨家勇, 何二锋, 等. 高温合金前缘热防护结构隔热性能分析[J]. 航空学报, 2016, 37(1):53-58. WANG M, YANG J Y, HE E F, et al. Analysis and design of leading edge using metallic thermal protection system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):53-58(in Chinese).
[19] JENKINS D R. X-15:Extending the frontiers of flight:NASA/SP-2007-56[R]. Washington:NASA, 2007.
[20] JENKINS D R. Hypersonics before the shuttle:a concise history of the X-15 research airplane:NASA/SP-2000-4518[R]. Washington:NASA, 2000.
[21] MERLIN P W. Design and development of the Blackbird:challenges and lessons learned:AIAA-2013-1534[R]. Reston:AIAA, 2013.
[22] JENKINS J M, QUINN R D. A historical perspective of the YF-12A thermal loads and structures program:NASA/TM-1996-104317[R]. Washington D.C.:NASA, 1996.
[23] LAUNIUS R D. Designing the Shuttle:Living within the Political System," in space shuttle legacy[M]. Reston:AAIA, 2014:25-45.
[24] SYNDER R E. Dynamic and static modeling of the shuttle orbiter's thermal protection system[J]. Journal of the Acoustical Society of America, 1982, 70(S1):S75.
[25] CURRY D M, LATCHEN J W, WHISENHUNT G B. Space shuttle leading edge structural development:AIAA-1983-0483[R]. Reston:AIAA, 1983.
[26] WILLIAMS S D, CURRY D M, CHAO D C, Ablation analysis of the shuttle orbiter oxidation protected reinforced carbon-carbon[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(3):478-485.
[27] FASANELLA E L, KAREN H L, JONATHAN G, et al. Test and analysis correlation of form impact onto space shuttle wing leading edge RCC Panel 8[C]//8th International LS-DYNA Users Conference, 2004:1-11.
[28] RIVERS H E, GLASS D E. Advances in hot-structure development[C]//5th European Workshop on Thermal Protection Systems and Hot Structures, 2006:1-11.
[29] COOPER P A, HOLLOWAY P F. The shuttle tile story[J]. Astronautics and Aeronautics, 1981, 19(1):24-36.
[30] HUANG J, YAO W X. High-temperature mechanical properties of strain isolation pad for thermal protection system[J]. Journal of Spacecraft and Rockets, 2018, 55(4):848-855.
[31] JENKINS D R. Protecting the body:the orbiter's thermal protection system, in space shuttle legacy[M]. Reston:AAIA, 2014:111-135.
[32] WILLIAMS J G. Structural tests on space shuttle thermal protection system constructed with non-densified and densified LI-900 and LI-2200 tile:NASA/TM-1981-81903[R]. Washington D.C.:NASA, 1981.
[33] FROSCH R A, LEISER D B, GOLDSTEIN H E, et al. Fibrous refractory composite insulation:United States. US4148962A[P]. 1978-09-08.
[34] STRAUSS E L, JOHNSON C W, GRAESE R W, et al. Producibility of fibrous refractory composite insulation, FRCI 40-20[J]. Ceramic Engineering and Science Proceedings, 1983, 4:611-623.
[35] MARNEL S, DAN L, HOWARD G. Alumina-enhanced thermal barrier:NASA/ARC-1989-12135[R]. Washington D.C.:NASA, 1989.
[36] LEISER D B, SMITH M, STEWART D A. Options for improving rigidized ceramic heat shields[J]. Ceramic Engineering and Science Proceedings, 1985, 6:757-768.
[37] HENG V, HINKLE K A, SANTOS M A. Rigid insulation and method of producing same:United States. US6716782B2[P]. 2004-04-06.
[38] GOLDSTEIN H E, LEISER D B, KATVALA V. Reaction cured borosilicate glass coating for low-density fibrous silica insulation[J]. Borate Glasses, 1978, 12:623-634.
[39] LEISER D B, STEWART D A, DIFIORE R, et al. Flight performance of a functionally:gradient material, tufi, on shuttle orbiter:20020042186[R]. Washington D.C.:NASA, 2001.
[40] MILOS F, SQUIRE T. Thermal stress analysis of X-34 wing leading edge tile TPS[C]//31st Thermophysics Conference, 1996:1-20.
[41] SQUIRE T H, RASKY D J, MILOS F S, et al. TPS materials and costs for future reusable launch vehicles[J]. Journal of Spacecraft and Rockets, 2000, 38(2):294-296.
[42] BLUM Y D, JOHNSON S M, CHEN P. New approaches to waterproofing of space shuttle insulating materials:NASA/CR-1997-204289[R]. Washington D.C.:NASA, 1997.
[43] MARSHALL L, CORPENING G, SHERRILL R. A chief engineer's view of the NASA X-43A scramjet flight test:AIAA-2005-3332[R]. Reston:AIAA, 2005.
[44] HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program:AIAA-2008-2540[R]. Reston:AIAA, 2008.
[45] MUI D, CLANCY H M. Development of a protective ceramic coating for shuttle orbiter advanced flexible reusable surface insulation[C]//Proceedings of the 9th Annual Conference on Composites and Advanced Ceramic Materials:Ceramic Engineering and Science Proceedings, 2008.p.793-805.
[46] BARNEY A, WHITTINGTON C A, EILERTSON B, et al. Thermal insulating conformal blanket:United States. US6652950B2[P]. 2003-11-25.
[47] GONG C, BING C, GU L. Comparison study of RBCC powered suborbital reusable launch vehicle concepts:AIAA-2015-3606[R]. Reston:AIAA, 2015.
[48] KOURTIDES D A, PITTS W C, GOLDSTEIN H E, et al. Composite flexible blanket insulation:United States. US5038693A[P]. 1991-08-13.
[49] 周志勇, 马彬, 张萃, 等. X-37B轨道试验飞行器可重复使用热防护系统综述[J]. 航天器工程, 2016, 25(4):95-101. ZHOU Z Y, MA B, ZHANG C, et al. Reusable thermal protection system for orbital test vehicle X-37B[J]. Spacecraft Engineering, 2016, 25(4):95-101(in Chinese).
[50] 子力. X-33可复用运载器验证计划进展[J]. 中国航天, 1999(4):19-22. ZI L. Progress in the verification plan of reusable launch vehicle X-33[J]. Aerospace China, 1999(4):19-22(in Chinese).
[51] 解维华, 张博明, 杜善义. 重复使用飞行器金属热防护系统的有限元分析与设计[J]. 航空学报, 2006, 27(4):650-656. XIE W H, ZHANG B M, DU S Y. Analysis and design of metallic thermal protection systems for reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):650-656(in Chinese).
[52] LOCKHEED M C.X-33. Phase 2:NASA/CR-1998-208192[R]. Washington D.C.:NASA, 1998.
[53] BLOSSER M L, CHEN R R, SCHMIDT I H, et al. Advanced metallic thermal protection system development:AIAA-2002-0504[R]. Reston:AIAA, 2002.
[54] BLOSSER M L. Fundamental modeling and thermal performance issues for metallic thermal protection system concept[J]. Journal of Spacecraft and Rockets, 2004, 41(2):195-206.
[55] NG W H, FRIEDMANN P P, WAAS A M. Thermomechanical analysis of a thermal protection system with defects and heat shorts:AIAA-2006-2212[R]. Reston:AIAA, 2006.
[56] TUMINO G, MANCUSO S. The success of the ESA Intermediate experimental vehicle program[J]. Acta Astronautica, 2016, 124:1.
[57] BUFFENOIR F, ZEPPA C, PICHON T, et al. Development and flight qualification of the C-SiC thermal protection systems for the IXV[J]. Acta Astronautica, 2016, 124:85-89.
[58] PICHON T, SOYRIS P, FOUCAULT A, et al. C/SiC based rigid external thermal protection system for future reusable launch vehicles:generic shingle, pre-X/FLPP anticipated development test studies[C]//5th European Workshop on Thermal Protection Systems and Hot Structures, 2006.
[59] SOYRIS P, FOUCAULT A, PARETEAU J M, et al. C/SiC based rigid external thermal protection system for future reusable launch vehicles:generic shingle, pre-X/FLPP anticipated development test studies:AIAA-2005-3375[R]. Reston:AIAA, 2005.
[60] KELLER K, PFEIFFER E, HANDRICK K, et al. Advanced High Temperature Insulations[C]//5th European Workshop on Thermal Protection Systems and Hot Structures, 2006.
[61] HURWITZ F I. Thermal protection systems (TPSs)[M]. New York:John Wiley & Sons, 2010:2-11.
[62] DANIEL L. X-37 flight demonstrator project:capabilities for future space transportation system development[C]//55th International Astronautical Congress, 2004.p.1-8.
[63] MIKULA D F K, HOLTHAUS M, JENSEN T E, et al. X-37 flight demonstrator system safety program and challenges:AIAA-2000-5073[R]. Reston:AIAA, 2000.
[64] PAEZ C. The development of the X-37 re-entry vehicle:AIAA-2004-4186[R]. Reston:AIAA, 2004.
[65] GHOSHROY S. The X-37B:Backdoor weaponization of space[J]. Bulletin of the Atomic Scientists, 2015, 27:19-29.
[66] GRANTZ A C. X-37B orbital test vehicle and derivatives:AIAA-2011-7315[R]. Reston:AIAA, 2011.
[67] DAVID J. X-37 flight demonstrator:a building block in NASA's future access to space; X-37 flight demonstrator:orbital vehicle technology development approach:200400-41357[R]. Washington D.C.:NASA, 2004.
[68] JOHNSON S M. Thermal protection materials and systems:past, present, and future:NASA-ARC-E-DAA-TN9472[R]. Washington D.C.:NASA, 2013.
[69] STEWART D A, LEISER D B. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite:United States. US7314648B1[P]. 2008-01-01.
[70] LEISER D B, HSU M S, CHEN T S. Refractory oxidative-resistant ceramic carbon insulation:United States. US6225248B1[P]. 2001-05-01.
[71] LEISER D B, SMITH M, CHURCHWARD R A, et al. Toughened uni-piece fibrous insulation:United States. US005079082A[P]. 1992-06-07.
[72] 鲁芹, 胡龙飞, 罗晓光, 等. 高超声速飞行器陶瓷复合材料与热结构技术研究进展[J]. 硅酸盐学报, 2013, 41(2):251-260. LU Q, HU L F, LUO X G, et al. Development of ceramic composite and hot structures for hypersonic vehicles[J]. Journal of the Chinese Ceramic Society, 2013, 41(2):251-260(in Chinese).
[73] STEWART D A, LEISER D B. Lightweight TUFROC TPS for Hypersonic Vehicles:AIAA-2006-7945[R]. Reston:AIAA, 2006.
[74] JAY F, DAVID S, DANIEL L, et al. TUFROC thermal protection system:NASA-ARC-E-DAA-TN71391[R]. Washington D.C.:NASA, 2019.
[75] HUDSON L D, STEPHENE C A. The X-37 hot structure control surface testing:NASA/TM-2006-213677[R]. Washington D.C.:NASA, 2006.
[76] VALENTINE P G. Hot structure control surface progress for X-37 technology development program:20040086536[R]. Washington D.C.:NASA, 2004.
[77] PROSUNTSOV P V, SHULYAKOVSKⅡ A V. Numerical simulation of a thermal-protection element of a promising reusable capsule-type lander[J]. Journal of Engineering Physics and Thermophysics, 2017, 90(1):110-116.
[78] BESSIRE B K, LAHANKAR S A, MINTON T K. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1383-1395.
[79] SEEDHOUSE E. Dragon design, development, and test[M]. 2016:23-44.
[80] HOWARD R D. Dream chaser commercial crewed spacecraft overview:AIAA-2011-2245[R]. Reston:AIAA, 2011.
[81] STONE H W, PILAND W M. 21 st century space transportation system design approach-HL-20 personnel launch system[J]. Journal of Spacecraft and Rockets, 1993, 30(5):521-528.
[82] CHAUMETTE D, CRETENET J C. Hermes thermal protection system overview[J]. Acta Astronautica, 1987, 16:391-399.
[83] WUILBERCQ R, AHMAD A, SCANLON T, et al. Towards robust aero-thermodynamic predictions for re-usable single-stage to orbit vehicles:AIAA-2012-5803[R]. Reston:AIAA, 2012.
[84] EGGERS T. Numerical investigation on the potential of steam cooling for the Skylon spaceplane in hypersonic flow[C]//28th International Congress of the Aeronautical Sciences. Braunschweig:DLR, 2012:1-10.
[85] VARVILL R, BOND A. Application of carbon fibre truss technology to the fuselage structure of the Skylon spaceplane[J]. Journal of the British Interplanetary Society, 2004, 57:173-185.
[86] ITO T, AKIMOTO T. HOPE-Japan's first step for spaceplane[C]//Proceedings of the First International Conference on Hypersonic Flight in the 21 st Century, 1988:134-142.
[87] OGASAWARA T, ISHIKAWA T. Application of Tyranno, M Fiber/Si-Ti-C-O matrix composite to the thermal protection system of the Japanese Hope-X space vehicle[M]. New York:John Wiley & Sons, 2008:23-30.
[88] SHOICHIRO A, SHO M, JIRO K, et al. Lessons learned from HOPE system designing:AIAA-2001-1881[R]. Reston:AIAA, 2001.
[89] 李锋. 疏导式热防护[M]. 北京:中国宇航出版社, 2017:1-10. LI F. Dredging thermal protection structures[M]. Beijing:China Aerospace Press, 2017:1-10(in Chinese).
[90] GLASS D E. Heat-pipe-cooled leading edges for hypersonic vehicles:20080014285[R]. Washington D.C.:NASA, 2006.
[91] SHUKLA K N. Heat pipe for aerospace applications-an overview[J]. Journal of Electronics Cooling and Thermal Control, 2015, 5:1-14.
[92] 李金旺, 戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术, 2019, 39(3):30-42. LI J W, DAI S G. Recent progress and prospect of high-temperature heat pipe technology[J]. Chinese Space Science and Technology, 2019, 39(3):30-42(in Chinese).
[93] SILVERSTEIN C C. A feasibility study of heat pipe cooled leading edges for hypersonic cruise aircraft:NASA/CR-1971-1857[R]. Washington D.C.:NASA, 1971.
[94] NIBLOCK G A, REEDER J C. Four space shuttle wing leading edge concepts[J]. Journal of Spacecraft and Rockets, 1974, 11(5):314-320.
[95] CAMARDA C J, Glass D E. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles:19930003272[R]. Washington D.C.:NASA,1993.
[96] SRIMUANG W, AMATACHAYA P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable & Sustainable Energy Reviews, 2012, 16(6):4303-4315.
[97] CAMARDA C J, MASEK R V. Design, analysis, and tests of a shuttle-type heat-pipe-cooled leading edge:AIAA-1981-4020[R]. Reston:AIAA, 1981.
[98] BOMAN B L, ELIAS T I. Tests on a sodium/Hastelloy X wing leading edge heat pipe for hypersonic vehicles. AIAA-1990-38451[R]. Reston:AIAA, 1990.
[99] BOMAN B L, CITRIN K M, GARNER E C. Heat pipes for wing leading edges of hypersonic vehicles. NASA/CR-1990-1881922[R]. Washington D.C.:NASA, 1990.
[100] CAMARDA C J, RANSONE P O. Reusable high-temperature heat pipes and heat pipe panels:United States. US4868346[P]. 1989-06-13.
[101] GLASS D E, CAMARDA C J, MERRIGAN M A, et al. Fabrication and testing of Mo-Re heat pipes embedded in carbon/carbon[J]. Journal of Spacecraft and Rockets, 1999, 36(1):79-86.
[102] BAI T, ZHANG H, XU H. Application of high temperature heat pipe in hypersonic vehicles thermal protection[J]. Journal of Central South University of Technology, 2011, 18:1278-1284.
[103] 艾邦成, 陈思员, 韩海涛, 等. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4(1):1-7. AI B C, CHEN S Y, HAN H T, et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases, 2019, 4(1):1-7(in Chinese).
[104] 朱晓军, 李锋, 欧东斌, 等. 疏导式热防护在翼前缘中的应用探索[J]. 力学与实践, 2019, 41(4):388-392. ZHU X J, LI F, OU D B, et al. Heat-pipe-cooled thermal protection for the leading edge of the wing[J]. Mechanics in Engineering, 2019, 41(4):388-392(in Chinese).
[105] 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011, 32(9):1622-1628. SUN J, LIU W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1622-1628(in Chinese).
[106] STEEVES C A, HE M Y, KASEN S D. Feasibility of metallic structural heat pipes as sharp leading edges for hypersonic vehicles[J]. Journal of Applied Mechanics, 2009, 76:031014-1-031019-9.
[107] GLASS D E, MERRIGAN M A, SENA J T. Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon:NASA/CR-1998-207642[R]. Washington D.C.:NASA, 1998.
[108] GLASS D E, MERRIGAN M A, SENA, J T, et al. Fabrication and testing of a leading-edge-shaped heat pipe:NASA/CR-1998-208720[R]. Washington D.C.:NASA, 1998.
[109] AI B C, CHEN S Y, YU J J, et al. Abrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling[J]. Heat and Mass Transfer, 2018, 54(5):1359-1366.
[110] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析[J]. 物理学报, 2013, 62(7):074401. SUN J, LIU W Q. Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle[J]. Acta Physica Sinica, 2013, 62(7):074401(in Chinese).
[111] LIU H, LIU W. A numerical model for the platelet heat-pipe-cooled leading edge of hypersonic vehicle[J]. Acta Astronautica, 2016, 118:210-217.
[112] DICKINSON T J, BOWMAN W J, STOYANOF M. Performance of liquid metal heat pipes during a space shuttle flight[J]. Journal of Thermophysics and Heat Transfer, 1998, 12(2):263-269.
[113] 韩海涛, 邓代英, 陈思员, 等. 尖前缘一体化高温热管结构设计与分析机械强度, 2013, 35(1):48-52. HAN H T, DENG D Y, CHEN S Y, et al. Design and structural analysis of sharp leading edge integrated with heat pipe[J]. Journal of Mechanical Strength, 2013, 35(1):48-52(in Chinese).
[114] 曲伟, 王焕光. 高温及超高温热管的相容性和传热性能[J]. 化工学报, 2011, 62(S1):77-81. QU W, WANG H H. Compatibility and heat transfer of high and super high temperature heat pipes[J]. CIESC Journal, 2011, 62(S1):77-81(in Chinese).
[115] 金烜, 沈赤兵, 吴先宇, 等. 超燃冲压发动机再生冷却技术研究进展[J]. 火箭推进, 2016, 42(5):66-73. JIN X, SHEN C B, WU X Y, et al. Progress of regenerative cooling technology for scramjet[J]. Journal of Rocket Propulsion, 2016, 42(5):66-73(in Chinese).
[116] BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer, 2005, 127(4):441-453.
[117] HUANG Z, XIONG Y B, LIU Y Q, et al. Experimental investigation of full-coverage effusion cooling through perforated flat plates[J]. Applied Thermal Engineering, 2015, 76:76-85.
[118] BAO W, QIN R, ZHOU R X, et al. Effect of cooling channel geometry on re-cooled cycle performance for hydrogen fueled scramjet[J]. International Journal of Hydrogen Energy, 2010, 35(13):7002-7011.
[119] SOBEL D L, SPADACCINI L J. Hydrocarbon fuel cooling technologies for advanced propulsion[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(2):344-351.
[120] KELLY H N, BLOSSER M L. Active cooling from the sixties to NASP:NASA-19930003270[R]. Washington D.C.:NASA, 1993.
[121] PAQUETTE E, WARBURTON R, ECKEL A, et al. Cooled CMC scramjet combustor structure development:AIAA-2002-4132[R]. Reston:AIAA, 2002.
[122] PAQUETTE E. Cooled CMC Structures for scramjet engine flowpath components:AIAA-2005-3432[R]. Reston:AIAA, 2005.
[123] JASKOWIAK E H, DICKENS K W. Cooled ceramic matrix composite propulsion structures demonstrated:NASA-2005-213419[R]. Washington D.C.:NASA, 2005.
[124] BOUQUET C, LACOMBE A, HAUBER B, et al. Ceramic matrix composites cooled panel development for advanced propulsion systems:AIAA-2004-1998[R]. Reston:AIAA, 2004.
[125] LARRIEU J M, UHRIG G, THEBAULT J, et al. Active cooling panel of thermostructural composite material and method for its manufacture:United States. US20040194941A1[P]. 2004-10-07.
[126] LARRIEU J M, UHRIG G, THEBAULT J, et al. Method of manufacturing an active cooling panel out of thermostructural composite material:United States. US20050077341A1[P]. 2005-04-14.
[127] BOUQUET C, HAUBER B, THEBAULT J. Validation of a leak-free C/SiC heat exchanger technology:AIAA-2003-6918[R]. Reston:AIAA, 2003.
[128] 刘双, 张博明. 发汗式热防护系统主动冷却效率研究[J]. 宇航学报, 2011, 32(2):433-438. LIU S, ZHANG B M. Investigation on Transpiration active cooling metallic thermal protection systems[J]. Journal of Astronautics, 2011, 32(2):433-438(in Chinese).
[129] KRENKEL W. Microstructure tailoring of C/C-SiC composites[J]. Ceramic Engineering and Science Proceedings, 2003, 24(4):471-476.
[130] 陈朝辉, 王松. 先进推进系统用主动冷却陶瓷基复合材料结构研究进展[J]. 材料工程, 2012(11):92-96. CHEN C H, WANG S, Progress of actively cooled ceramic matrix composites applied in advanced propulsion systems[J]. Journal of Materials Engineering, 2012(11):92-96(in Chinese).
[131] SALMON T, CAHUZAC G, BOUCHEZ M, et al. Method for making a double-walled thermostructural composite monolithic component and resulting component:United States. US27503149B2[P]. 2009-03-17.
[132] BOUCHEZ M, CAHUZAC G, BEYER S. PTAH-SOCAR fuel-cooled composite materials structure in 2003:AIAA-2009-7353[R]. Reston:AIAA, 2009.
[133] SIPPEL M, TRIVAILO O, BUSSLER L, et al. Evolution of the SpaceLiner towards a Reusable TSTO-Launcher[C]//67th International Astronautical Congress, 2016:1-22.
[134] SIPPEL M, VALLUCHI C, BUSSLER L, et al. SpaceLiner concept as catalyst for advanced hypersonic vehicles research[C]//7th European Conference for Aeronautics and Space Sciences, 2017:1-12.
[135] SCHWANEKAMP T, MEYER F, REIMER T, et al. System studies on active thermal protection of a hypersonic suborbital passenger transport vehicle:AIAA-2014-2372[R]. Reston:AIAA, 2014.
[136] SIPPEL M, SCHWANEKAMP T, TRIVAILO O, et al. Progress of SpaceLiner rocket-powered high-speed concept[C]//64th International Astronautical Congress, 2013:1-14.
[137] GULHAN A, BRAUN S. An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows[J]. Experiments in Fluids, 2011, 50(3):509-525.
[138] 叶红, 王志瑾. 高超声速飞行器热防护结构参数优化及对比分析[J]. 航天器环境工程, 2013(5):69-74. YE H, WANG Z J. The optimization and comparison of thermal protection structures for hypersonic aircraft[J]. Spacecraft Environment Engineering, 2013(5):69-74(in Chinese).
[139] 解维华, 张博明, 杜善义. 金属热防护系统设计的有限元分析[J]. 航空学报, 2006, 27(5):166-171. XIE W H, ZHANG B M, DU S Y. Finite element analysis of metallic thermal protection systems design[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):166-171(in Chinese).
[140] 韩杰才, 梁军, 王超, 等. 高超声速飞行器两类典型防热材料的性能表征与评价[J]. 力学进展, 2009, 39(6):695-715. HAN J C, LIANG J, WANG C, et al. Material characterization and behavior evaluation of two typical thermal protection materials for hypersonic aircrafts[J]. Advances in Mechanics, 2009, 39(6):695-715(in Chinese).
[141] DARYABEIGI K. Heat transfer in high-temperature fibrous insulation[J]. Journal of Thermophysics & Heat Transfer, 2002, 17(1):10-20.
[142] SPINNLER M, WINTER E R F, VISKANTA R. Studies on high-temperature multilayer thermal insulations[J]. International Journal of Heat and Mass Transfer, 2004, 47(6):1305-1312.
[143] KANT T, BABU C S. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models[J]. Composite Structures, 2000, 49(1):77-85.
[144] REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6):593-626.
[145] LIAKAT M, NADERI M, KHONSARI M M, et al. Nondestructive testing and prediction of remaining fatigue life of metals[J]. Journal of Nondestructive Evaluation, 2014, 33(3):309-316.
[146] MEO M, VIGNJEVIC R, MARENGO G. The response of honeycomb sandwich panels under low-velocity impact loading[J]. International Journal of Mechanical Sciences, 2005, 47(9):1301-1325.
[147] FOO C C, CHAI G B, SEAH L K. A model to predict low-velocity impact response and damage in sandwich composites[J]. Composites Science and Technology, 2008, 68(6):1348-1356.
[148] HUANG C, ZHANG Y, VILAR R. Microstructure and anti-oxidation behavior of laser clad Ni-20Cr coating on molybdenum surface[J]. Surface & Coatings Technology, 2010, 205(3):835-840.
[149] ZHANG D D, REN J J, LI L J, et al. Terahertz non-destructive testing technology for glass fiber honeycomb composites[J]. Acta Photonica Sinica, 2019, 48(2):0212002.
[150] GLASS D E, DIRLING R, CROOP H, et al. Materials development for hypersonic flight vehicles:AIAA-2006-8122[R]. Reston:AIAA, 2006.
[151] STEYER T E. Shaping the future of ceramics for aerospace applications[J]. International Journal of Applied Ceramic Technology, 2013, 10(3):389-394.
[152] TIMOTHY A B, JOSEPH M, BRIAN A M. Review of gaps, obstacles, and technological challenges in hypersonic applications[J]. International Journal of Energetic Materials and Chemical Propulsion, 2018, 17(1):13-55.
[153] SING S L, YEONG W Y, WIRIA F E, et al. Direct selective laser sintering and melting of ceramics:a review[J]. Rapid Prototyping Journal, 2017, 23(3):1355-2546.
[154] 张宗波, 郎冠卿, 姜海富, 等. 低地球轨道航天器涂层防护技术研究进展[J]. 航天器环境工程, 2016, 33(1):113-118. ZHANG Z B, LANG G Q, JIANG H F, et al. Review of protection coating techniques for LEO spacecrafts[J]. Spacecraft Environment Engineering, 2016, 33(1):113-118(in Chinese).
[155] 关蕴奇, 姜勇刚, 冯军宗, 等. 无机纤维增强SiO2气凝胶隔热复合材料的研究进展[J]. 材料导报, 2017, 31(29):438-443. GUAN Y Q, JIANG Y G, FENG J Z, et al. Progress of silica aerogel insulation composites[J]. Materials Reports, 2017, 31(29):438-443(in Chinese).
[156] 杨强, 解维华, 彭祖军, 等. 热防护设计分析技术发展中的新概念与新趋势[J]. 航空学报, 2015,36(9):183-193. YANG Q, XIE W H, PENG Z J, et al. New concepts and trends in development of thermal protection design and analysis technology[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):183-193(in Chinese).
文章导航

/