软件定义网络的出现推动了航空集群机载网络的发展,同时也为机载网络的一致性更新带来了挑战。针对拓扑变化导致的网络更新期间可用路径失效问题,提出适应拓扑变化的拥塞最小化网络更新策略。首先,为减少可用路径失效带来的数据包丢失,在更新之前采用重路由机制进行处理;然后,针对重路由机制可能引起的网络拥塞,设计了贪婪流迁移算法缓解拥塞;最后,通过瞬时拥塞最小化更新算法完成整个网络更新。仿真结果表明:与传统的拥塞一致性更新算法相比,所提更新策略用规则开销、瞬时网络拥塞方面的少量提高换取了网络更新期间数据包丢失的显著降低。
The emergence of software-defined networking has accelerated the development of airborne networks of aviation swarm, while also presenting challenges for their consistency update. To solve the failure problem of available paths during network update caused by topology changes, a congestion-minimization network update strategy for topology changes is proposed. Firstly, to reduce the packet loss caused by the failure of available paths, the rerouting mechanism is used for processing before the update. Then, for the network congestion caused by the rerouting mechanism, the greedy flow migration algorithm is designed to reduce the network congestion. Finally, the entire network update is completed by the instantaneous congestion minimization update algorithm. The simulation results show that compared with the traditional congestion consistency update algorithm, the update strategy proposed in this paper allows a small increase in the overhead of rules and instantaneous network congestion in exchange for a significant reduction in packet loss during network update.
[1] 梁晓龙, 何吕龙, 张佳强, 等. 航空集群构型控制及其演化方法[J]. 中国科学:技术科学, 2019, 49(3):277-287. LIANG X L, HE L L, ZHANG J Q, et al. Configuration control and evolutionary mechanism of aircraft swarm[J]. Scientia Sinica Techologica, 2019, 49(3):277-287(in Chinese).
[2] 梁一鑫, 程光, 郭晓军, 等. 机载网络体系结构及其协议栈研究进展[J]. 软件学报, 2016, 27(1):96-111. LIANG Y X, CHENG G, GUO X J, et al. Research progress on architecture and protocol stack of the airborne network[J]. Journal of Software, 2016, 27(1):96-111(in Chinese).
[3] MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow:Enabling innovation in campus networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2):69-74.
[4] KREUTZ D, RAMOS F M V, ESTEVES V P, et al. Software-defined networking:A comprehensive survey[J]. Proceedings of the IEEE, 2014, 103(1):10-13.
[5] MONSANTO C, REICH J, FOSTER N, et al. Composing software defined networks[C]//10th USENIX Symposium on Networked Systems Design and Implementation, 2013:1-13.
[6] 吕娜, 刘创, 陈柯帆, 等. 一种面向航空集群的集中控制式网络部署方法[J]. 航空学报, 2018, 39(7):321961. LYU N, LIU C, CHEN K F, et al. A method for centralized control network deployment of aeronautic swarm[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):321961(in Chinese).
[7] 赵尚弘, 陈柯帆, 吕娜, 等. 软件定义航空集群机载战术网络[J]. 通信学报, 2017, 38(8):140-155. ZHAO S H, CHEN K F, LYU N, et al. A software defined airborne tactical network for aeronautic[J]. Journal on Communications, 2017, 38(8):140-155(in Chinese).
[8] FOERSTER K T, SCHMID S, VISSICCHIO S. Survey of consistent software-defined network updates[J]. IEEE Communications Surveys & Tutorials, 2018, 21(2):1435-1461.
[9] REITBLATT M, FOSTER N, REXFORD J, et al. Abstractions for network update[J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4):323-334.
[10] JIN X, LIU H H, GANDHI R, et al. Dynamic scheduling of network updates[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(4):539-550.
[11] KOMAJWAR S, KORKMAZ T. Challenges and solutions to consistent data plane update in software defined networks[J]. Computer Communications, 2018, 130:50-59.
[12] LUDWIG A, MARCINKOWSKI J, SCHMID S. Scheduling loop-free network updates:It's good to relax![C]//Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing. New York:ACM, 2015:13-22.
[13] MAHAJAN R, WATTENHOFER R. On consistent updates in software defined networks[C]//Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks. New York:ACM, 2013:1-7.
[14] MATTOS D M F, DUARTE O C M B, PUJOLLE G. Reverse update:A consistent policy update scheme for software-defined networking[J]. IEEE Communications Letters, 2016, 20(5):886-889.
[15] KATTA N P, REXFORD J, WALKER D. Incremental consistent updates[C]//Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. New York:ACM, 2013:49-54.
[16] HONG C Y, KANDULA S, MAHAJAN R, et al. Achieving high utilization with software-driven WAN[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4):15-26.
[17] ZHENG J, XU H, CHEN G, et al. Congestion-minimizing network update in data centers[J]. IEEE Transactions on Services Computing, 2016, 12(5):800-812.
[18] WANG W, HE W, SU J, et al. Cupid:Congestion-free consistent data plane update in software defined networks[C]//IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. Piscataway:IEEE Press, 2016:1-9.
[19] ZHENG J, XU H, ZHU X, et al. We've got you covered:Failure recovery with backup tunnels in traffic engineering[C]//2016 IEEE 24th International Conference on Network Protocols (ICNP). Piscataway:IEEE Press, 2016:1-10.
[20] FORSTER K T, WATTENHOFER R. The power of two in consistent network updates:Hard loop freedom, easy flow migration[C]//201625th International Conference on Computer Communication and Networks (ICCCN). Piscataway:IEEE Press, 2016:1-9.