综述

载人火星探测进展及其EDL过程GNC关键技术

  • 马广富 ,
  • 龚有敏 ,
  • 郭延宁 ,
  • 高新洲
展开
  • 哈尔滨工业大学 控制科学与工程系, 哈尔滨 150001

收稿日期: 2019-11-12

  修回日期: 2019-11-25

  网络出版日期: 2020-07-28

基金资助

国家自然科学基金(61973100,61673135,61876050)

Human Mars mission: Research progress and GNC key technologies during EDL

  • MA Guangfu ,
  • GONG Youmin ,
  • GUO Yanning ,
  • GAO Xinzhou
Expand
  • Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2019-11-12

  Revised date: 2019-11-25

  Online published: 2020-07-28

Supported by

National Natural Science Foundation of China (61973100,61673135,61876050)

摘要

随着火星探测技术的不断发展和探测任务的不断推进,载人火星探测在未来将会成为火星探测的重要手段。首先,回顾了无人火星探测任务的发展历程,对比分析了部分无人火星探测器进入、下降与着陆(EDL)过程的参数。然后,结合无人火星探测、载人月球探测和载人航天再入过程,梳理了载人火星探测的特点及需求,系统地总结了前苏联/俄罗斯和美国的载人火星探测研究进展以及技术储备。接着,归纳了载人火星探测的体系构成、集结方式和主要的技术挑战。最后,概括了载人火星EDL过程面临的难题,重点阐述了EDL的导航、制导与控制(GNC)关键技术。

本文引用格式

马广富 , 龚有敏 , 郭延宁 , 高新洲 . 载人火星探测进展及其EDL过程GNC关键技术[J]. 航空学报, 2020 , 41(7) : 23651 -023651 . DOI: 10.7527/S1000-6593.2020.23651

Abstract

With the development of Mars exploration technology and the advancement of Mars exploration missions, human Mars missions will become an important means of Mars exploration in the future. This paper first summarizes the current situation of unmanned Mars exploration missions, analyzing and comparing afterwards the Entry, Descent and Landing (EDL) parameters of some successful unmanned Mars explorers. Next, the characteristics and requirements of human Mars missions are presented based on a combination with the process of unmanned Mars exploration, manned lunar exploration, and manned earth re-entry. The research progress and technologies of human Mars missions in the Soviet Union/Russia and the United States are then systematically introduced. Hereafter, the main composition, assembly means, and main technical challenges of human Mars missions are provided. Furthermore, the problems of EDL in human Mars missions are summarized, followed finally by an introduction of key technologies of Guidance, Navigation and Control (GNC) during EDL in human Mars missions.

参考文献

[1] GRANT J, STEELE A, RICHARDSON M, et al. Mars science goals, objectives, investigations, and priorities[R]. Arlington:Mars Exploration Program Analysis Group,2006.
[2] GREELEY R, MCCLEESE D, GARVIN J. The Mars exploration program:Scientific goals, objectives, investigations, and priorities[C]//AGU Fall Meeting Abstracts, 2001.
[3] HOEHLER T M, WESTALL F. Mars exploration program analysis group goal one:Determine if life ever arose on Mars[J]. Astrobiology, 2010, 10(9):859-867.
[4] 吴智勇. 日本"希望"号的忧伤[J]. 知识窗, 2004(12):22. WU Z Y. The sadness of the Japanese "Hope Mars probe"[J]. Knowledge Window, 2004(12):22(in Chinese).
[5] 耿言,周继时,李莎,等. 我国首次火星探测任务[J]. 深空探测学报, 2018, 5(5):399-405. GENG Y,ZHOU J S,LI S,et al. Review of first Mars exploration mission in China[J]. Journal of Deep Space Exploration,2018,5(5):399-405(in Chinese).
[6] 肖择. 欧美相继发射火星探测器[J]. 上海航天, 2003, 20(4):7. XIAO Z. Europe and the United States have launched Mars probes[J]. Aerospace Shanghai, 2003, 20(4):7(in Chinese).
[7] 张曼倩. 节节突破的中国深空探测[J]. 国际太空, 2019(9):32-36. ZHANG M Q. Breaking through of deep space exploration in China[J]. Space International, 2019(9):32-36(in Chinese).
[8] 张扬眉. 印度成功发射火星轨道器[J]. 国际太空, 2013(12):52-58. ZHANG Y M. Indian Mars orbiter launched successfully[J]. Space International, 2013(12):52-58(in Chinese).
[9] CRAWFORD I. Human missions to Mars:Enabling technologies for exploring the red planet[J]. EOS, Transactions American Geophysical Union, 2008, 89(36):334-334.
[10] WEBB K D, LU P, DWYER C A M. Aerocapture guidance for a human Mars mission[C]//AIAA Guidance, Navigation, and Control Conference.Reston:AIAA, 2017.
[11] SALOTTI J M, HEIDMANN R. Roadmap to a human Mars mission[J]. Acta Astronautica, 2014, 104(2):558-564.
[12] MERRILL R G, CHAI P, JONES C A, et al. An integrated hybrid transportation architecture for human Mars expeditions[C]//AIAA Space 2015 Conference and Exposition. Reston:AIAA, 2015.
[13] POLSGROVE T, CHAPMAN J, SUTHERLIN S, et al. Human Mars lander design for NASA's evolvable Mars campaign[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2016.
[14] BRAUN R D, POWELL R W, ENGELUND W C, et al. Mars pathfinder six-degree-of-freedom entry analysis[J]. Journal of Spacecraft and Rockets, 1995, 32(6):993-1000.
[15] DESAI P N, SCHOENENBERGER M, CHEATWOOD F. Mars exploration rover six-degree-of-freedom entry trajectory analysis[J]. Journal of Spacecraft and Rockets, 2006, 43(5):1019-1025.
[16] EA EULER G A, HOPPER F. Design and reconstruction of the viking lander descent trajectories[J]. Journal of Guidance and Control, 1978, 1(5):372-378.
[17] LOCKWOOD M K. Introduction:Mars science laboratory:The next generation of Mars landers[J]. Journal of Spacecraft and Rockets, 2006, 43(2):257-257.
[18] ABILLEIRA F, HALSELL A, KRUIZINGA G, et al. 2018 Mars Insight trajectory reconstruction and performance from launch through landing[C]//AAS/AIAA Astrodynamics Specialist Conference,2019.
[19] BISWAL M M K, NAIDU A R. A novel entry, descent and landing architecture for mars landers[EB/OL]. (2018-09-10)[2019-11-12] arXiv preprint arXiv:180900062, 2018. https//arxiv.org/abs/1809.00062.
[20] DESAI P N, PRINCE J L, QUEEN E M, et al. Entry, descent, and landing performance of the Mars phoenix lander[J]. Journal of Spacecraft and Rockets, 2011, 48(5):798-808.
[21] GOLOMBEK M, KIPP D, WARNER N, et al. Selection of the InSight landing site[J]. Space Science Reviews, 2017, 211(1-4):5-95.
[22] KORNFELD R P, PRAKASH R, DEVEREAUX A S, et al. Verification and validation of the mars science laboratory/curiosity rover entry, descent, and landing system[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1251-1269.
[23] LI S, JIANG X. Review and prospect of guidance and control for Mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69:40-57.
[24] SAN MARTIN A M, LEE S W, WONG E C. The development of the MSL guidance, navigation, and control system for entry, descent, and landing[C]//23rd Space Flight Mechanics Meeting, 2013.
[25] SPENCER D A, BLANCHARD R C, BRAUN R D, et al. Mars pathfinder entry, descent, and landing reconstruction[J]. Journal of Spacecraft and Rockets, 1999, 36(3):357-366.
[26] SUBRAHMANYAM P, RASKY D. Entry, descent, and landing technological barriers and crewed MARS vehicle performance analysis[J]. Progress in Aerospace Sciences, 2017, 91:1-26.
[27] WAY D W, DAVIS J L, SHIDNER J D. Assessment of the Mars science laboratory entry, descent, and landing simulation[C]//23rd AAS/AIAA Space Flight Mechanics Meeting,2013.
[28] 吴俊. 国外载人火星探测情况浅析[C]//中国空间科学学会空间探测专业委员会全国空间探测学术研讨会会议, 2013. WU J. Analysis of the situation of foreign manned exploration of Mars[C]//The 26th National Symposium on Space Exploration of the Professional Committee of Space Exploration of Chinese Society of Space Rsearch, 2013(in Chinese).
[29] 吴小宁, 夏薇, 韩京军. 俄罗斯火星载人探测技术现状[J]. 航天器环境工程, 2008, 25(5):485-491. WU X N, XIA W, HAN J J. The technology of manned exploration of mars in Russia[J]. Spacecraft Enviroment Engineering, 2008, 25(5):485-491(in Chinese).
[30] CRAIG D A, HERRMANN N B, TROUTMAN P A. The evolvable mars campaign-study status[C]//2015 IEEE Aerospace Conference. Piscataway:IEEE Press, 2015.
[31] DRAKE B G. Human exploration of Mars:Challenges and design reference architecture 5.0[J]. Journal of Cosmology, 2010, 12:3578-3587.
[32] DWYER C A, POWELL R W. Entry, descent, and landing guidance and control approaches to satisfy Mars human mission landing criteria[C]//27th AAS/AIAA Space Flight Mechanics Meeting, 2017.
[33] ENGELUND W C, DWYER C A, POWELL R W, et al. Entry, descent, and landing architecture and technology challenges for human exploration of Mars[J]. Journal of Cosmology, 2010, 12:3601-3618.
[34] MOORE C L. Technology development for human exploration of Mars[J]. Acta Astronautica, 2010, 67(9-10):1170-1175.
[35] PRICE H, BAKER J, NADERI F. A minimal architecture for human journeys to Mars[J]. New Space, 2015, 3(2):73-81.
[36] 黄志澄. EDL技术:载人火星探索的关键[J]. 太空探索, 2014(10):14-19. HUANG Z C. EDL Technology:The key to human Mars exploration[J]. Space Exploration, 2014(10):14-19(in Chinese).
[37] DRAKE B G, HOFFMAN S J, BEATY D W. Human exploration of Mars, design reference architecture 5.0[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2010.
[38] DRAKE B G, WATTS K D. Human exploration of Mars design reference architecture 5.0, addendum#2[R]. Houston:NASA Johnson Space Center, 2014.
[39] MACCONE C. NASA gateways at L1 and L2 and the radio-quiet moon farside imperative[J]. Acta Astronautica, 2005, 57(2-8):145-155.
[40] THRONSON H, GEFFRE J, PRUSHA S, et al. The lunar L1 gateway concept:Supporting future major space science facilities[C]//Second Workshop on New Concepts for Far-Infrared and Submillimeter Space Astronomy,2004.
[41] DUGGAN M, ENGLE J, MOSEMAN T, et al. A crewed lunar lander concept utilizing the SLS, orion, and the cislunar deep space gateway[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2018.
[42] LAWRENCE S, NEAL C. The open gateway:Lunar exploration in 2050[C]//Planetary Science Vision 2050 Workshop, 2017.
[43] SIMON X, ENGLE J, DUGGAN M, et al. A crewed lunar lander concept utilizing the cislunar gateway[C]//AIAA Space Forum. Reston:AIAA, 2018.
[44] CASSADY R, CARBERRY C, CICHAN T. The deep space gateway:The next stepping stone to mars[C]//Deep Space Gateway Concept Science Workshop, 2018.
[45] TIMMONS K, CODERRE K, PRATT W D, et al. The orion spacecraft as a key element in a deep space gateway[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2018.
[46] RUCKER M, CONNOLLY, J. Deep space gateway-enabling missions to mars[R]. Washington, D.C.:NASA Headquarters, 2017.
[47] BOROWSKI S K, MCCURDY D R, PACKARD T W. Nuclear thermal rocket/vehicle characteristics and sensitivity trades for NASA's mars design reference architecture (DRA) 5.0 study[C]//Nuclear and Emerging Technologies for Space 2009, 2009.
[48] CASSELL A M, BRIVKALNS C A, BOWLES J V, et al. Human Mars mission design study utilizing the adaptive deployable entry and placement technology[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2017.
[49] CIANCIOLO A D, POLSGROVE T T. Human Mars entry, descent, and landing architecture study overview[C]//AIAA SPACE 2016 Conference. Reston:AIAA, 2016.
[50] KLEINHENZ J E, PAZ A. An ISRU propellant production system for a fully fueled mars ascent vehicle[C]//10th Symposium on Space Resource Utilization, 2017.
[51] PERCY T, MCGUIRE M, POLSGROVE T. In-space transportation for NASA's evolvable mars campaign[C]//AIAA Space 2015 Conference and Exposition. Reston:AIAA, 2015.
[52] PERCY T K, POLSGROVE T, SUTHERLIN S, et al. Human Mars entry, descent, and landing architecture study:Descent systems[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[53] POLSGROVE T, CHAPMAN J, SUTHERLIN S, et al. Human Mars lander design for NASA's evolvable Mars campaign[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2016.
[54] POLSGROVE T, DWYER-CIANCIOLO A M. Human Mars entry, descent and landing architecture study overview[C]//AIAA SPACE 2016 Conference. Reston:AIAA, 2016.
[55] POLSGROVE T, DWYER-CIANCIOLO A M, ROBERTSON E A, et al. Human Mars entry, descent, and landing architecture study:Rigid decelerators[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[56] POLSGROVE T, THOMAS H D, STEPHENS W, et al. Mars ascent vehicle design for human exploration[C]//AIAA SPACE 2015 Conference and Exposition. Reston:AIAA, 2015.
[57] PRICE H W, BRAUN R D, MANNING R, et al. A high-heritage blunt-body entry, descent, and landing concept for human Mars exploration[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[58] FRIZ P D, SAMAREH J, HOSDER S. A cost modeling approach for entry systems analysis of human Mars missions[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[59] SOSTARIC R R, CERIMELE C J, ROBERTSON E A, et al. A rigid mid lift-to-drag ratio approach to human Mars entry, descent, and landing[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2017.
[60] HOFFMAN S J, WILLIAMS N J. An introduction to human Mars mission equipment and operations[R]. Houston:NASA Johnson Space Center,2018.
[61] MCGUIRE M L, OLESON S R, BURKE L, et al. NASA GRC compass team conceptual point design and trades of a hybrid solar electric propulsion (SEP)/chemical propulsion human Mars deep space transport (DST) vehicle[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[62] PERCY T K, RODRIGUEZ M. Revisiting nuclear thermal propulsion for human Mars exploration[C]//AIAA Space 2017 Conference. Reston:AIAA, 2017.
[63] SCOTT J H. The value proposition of multi-megawatt electric power/propulsion for the human exploration of mars[C]//70th International Astronautical Conference (IAC), 2019.
[64] PERCY T K, POLSGROVE T, MERRILL R G, et al. Payload sensitivities for human Mars exploration transportation systems[C]//AIAA Space Forum. Reston:AIAA, 2018.
[65] POLSGROVE T P, THOMAS H D, STEPHENS W, et al. Human Mars ascent vehicle configuration and performance sensitivities[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2017.
[66] GERNHARDT M L, BEKDASH O S, LITAKER H L, et al. Mars ascent vehicle sizing, habitability, and commonality in NASA's evolvable Mars campaign[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2017.
[67] POLSGROVE T P, PERCY T K, RUCKER M, et al. Update to Mars ascent vehicle design for human exploration[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2019.
[68] GINA A. Top 10 Teams selected in virtual model stage of NASA's 3D-Printed habitat challenge[EB/OL]. (2018-06-29)[2019-11-12].https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/top-10-virtual-model-stage.
[69] LILLARD R, OLEJNICZAK J. Human Mars EDL pathfinder study:Assessment of technology development gaps and mitigations[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2017.
[70] POLSGROVE T P, THOMAS H D, CIANCIOLO A D, et al. Mission and design sensitivities for human Mars landers using hypersonic inflatable aerodynamic decelerators[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2017.
[71] KIMBERLY M, GIANINE F. Exploring the solar system? You may need to pack an umbrella[EB/OL]. (2018-09-11)[2019-11-12]. https://www.nasa.gov/feature/ames/exploring-the-solar-system-you-may-need-to-pack-an-umbrella.
[72] POLSGROVE T, CHAPMAN J, SUTHERLIN S, et al. Human Mars lander design for NASA's evolvable Mars campaign[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2016.
[73] JIANG X, WANG Y, LI S. Next-generation Mars EDL GNC:Challenges and solutions[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway:IEEE Press, 2014.
[74] 崔平远, 于正湜, 朱圣英. 火星进入段自主导航技术研究现状与展望[J]. 宇航学报, 2013, 34(4):447-456. CUI P Y, YU Z S, ZHU S Y. Research progress and prospect of autonomous navigation techniques for Mars entry phase[J]. Journal of Astronautics, 2013,34(4):447-456(in Chinese).
[75] 叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学:技术科学, 2015, 45(3):229-238. YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. 2015,45(3):229-238(in Chinese).
[76] ZHENG Y, CUI H. Mars atmospheric entry guidance using a sensitivity method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1672-1684.
[77] BOARD S S, COUNCIL N R. Pathways to exploration:Rationales and approaches for a US program of human space exploration[M]. Washington D.C.:National Academies Press, 2014.
[78] BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2006.
[79] MOSES R W, BUSHNELL D, KOMAR D R, et al. Maintaining human health for humans-Mars[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018.
[80] KORZUN A M, DUBOS G F, IWATA C K, et al. A concept for the entry, descent, and landing of high-mass payloads at Mars[J]. Acta Astronautica, 2010, 66(7-8):1146-1159.
[81] YU Z, CUI P, CRASSIDIS J L. Design and optimization of navigation and guidance techniques for Mars pinpoint landing:Review and prospect[J]. Progress in Aerospace Sciences, 2017, 94:82-94.
[82] CUI P, GAO X, ZHU S, et al. Visual navigation using edge curve matching for pinpoint planetary landing[J]. Acta Astronautica, 2018, 146:171-180.
[83] LOU T S, CHEN N H, WANG X Q, et al. Reliable distributed integrated navigation based on CI during Mars entry[J]. International Journal of Aerospace Engineering, 2019(PT2):1802659.1-1802659.11.
[84] LU P, SOSTARIC R R, MENDECK G F. Adaptive powered descent initiation and fuel-optimal guidance for Mars applications[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[85] JIANG X, LI S, FURFARO R. Integrated guidance for mars entry and powered descent using reinforcement learning and pseudospectral method[J]. Acta Astronautica, 2019, 163:114-129.
[86] 刘莹莹, 吕纪远, 周军. 载人登月软着陆中手动控制制导方案研究[J]. 西北工业大学学报, 2012, 30(4):479-484. LIU Y Y, LYU J Y, ZHOU J. Exploring manual-control strategy for manned lunar soft landing[J]. Journal of Northwestern Polytechnical University, 2012,30(4):479-484(in Chinese).
[87] BLELLOCH P A, BRANDEAU E, KAMMER D. Uncertainty quantification for Mars 2020 powered descent closed loop stability[C]//2018 AIAA Non-Deterministic Approaches Conference. Reston:AIAA, 2018.
[88] HALDER A, BHATTACHARYA R. Dispersion analysis in hypersonic flight during planetary entry using stochastic liouville equation[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2):459-474.
[89] JIANG X. Uncertainty quantification for Mars atmospheric entry using polynomial chaos and spectral decomposition[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[90] PRABHAKAR A, FISHER J, BHATTACHARYA R. Polynomial chaos-based analysis of probabilistic uncertainty in hypersonic flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):222-234.
文章导航

/