流体力学与飞行力学

交互式棱柱网格生成中翘曲现象形成机制及消除算法

  • 孙岩 ,
  • 江盟 ,
  • 孟德虹 ,
  • 庞宇飞
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2020-06-23

  修回日期: 2020-07-06

  网络出版日期: 2020-07-27

基金资助

中国空气动力研究与发展中心风雷青年创新基金(20190106);国家数值风洞工程(NNW)

Formation mechanism and elimination algorithm of warping in interactive prismatic grid generation

  • SUN Yan ,
  • JIANG Meng ,
  • MENG Dehong ,
  • PANG Yufei
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-06-23

  Revised date: 2020-07-06

  Online published: 2020-07-27

Supported by

FengLei Youth Innovation Fund of CARDC (20190106); National Numerical Wind Tunnel Project (NNW)

摘要

在基于径向基函数插值的交互式棱柱网格生成中,当物面网格单元空间法矢变化范围较大或变化剧烈时,棱柱网格生成会发生翘曲问题,降低棱柱网格质量。针对该问题,首先采用DLR-F6机翼外形算例对翘曲现象进行了介绍和初步分析,并结合平板外形棱柱网格生成,通过不同波长推进位移扰动模拟法矢变化对推进位移的影响,研究棱柱网格翘曲现象的形成机制。不同位移扰动下平板棱柱网格生成结果证实边界棱线网格点推进位移不光滑会通过空间插值放大,引起棱柱网格发生翘曲,且网格翘曲的表现形式与推进位移的分布有关。从而间接表明棱柱网格生成中翘曲现象是由法矢变化带来推进位移分布不光滑引起的。然后从翘曲现象的形成机制出发,基于拉普拉斯方法发展了推进位移光顺技术,并通过DLR-F6机翼算例进行了验证。测试结果表明,光顺技术能够完全消除棱柱网格的翘曲,获得光顺的高质量棱柱网格。最后通过DLR-F6翼身组合体外形棱柱网格生成,展示了添加光顺技术的棱柱网格生成算法的应用潜力。

本文引用格式

孙岩 , 江盟 , 孟德虹 , 庞宇飞 . 交互式棱柱网格生成中翘曲现象形成机制及消除算法[J]. 航空学报, 2021 , 42(6) : 124443 -124443 . DOI: 10.7527/S1000-6893.2020.24443

Abstract

The prismatic grid warping may appear when the normal vectors of the surface grid element change considerably or fast in the interactive prismatic grid generation based on radial basis function interpolation, consequently reducing the quality of the prismatic grid. To solve this problem, this paper first introduced and analyzed the warping phenomenon through the prismatic grid generation of the DLR-F6 wing configuration. Then the formation mechanism was investigated by adding different wave-length disturbances to advancing displacement to simulate the effect of the normal vector variation in a flat plate prismatic grid generation case. The prismatic grid generation results of the flat plate with different disturbances demonstrate that the roughness of the advancing displacement could be magnified by spatial interpolation, thus causing the prismatic grid warping whose appearance depends on the distribution of the advancing displacement. The results above also show that the prismatic grid warping is induced by the roughness of the advancing displacement caused by the changes of normal vectors. Subsequently, a smoothing technology was developed based on the Laplace method inspired by the formation mechanism of grid warping and verified through the DLR-F6 wing configuration case. The test results show that the smoothing technology can completely eliminate the grid warping and obtain high-quality prismatic grids. Finally, the potentiality of the prismatic grid generation method with the smoothing technology was displayed through the grid generation case of the DLR-F6 wing-body configuration.

参考文献

[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary aerosciences:NASA/CR-2014-218178[R]. Washington,D.C.:NASA, 2014.
[2] 张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J]. 空气动力学学报, 2016, 34(4):405-417. ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computation fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4):405-417(in Chinese).
[3] THOMPSON J F, SONI B K, WEATHERILL N P. Handbook of grid generation[M]. Boca Raton:CRC Press, 1998:4-21.
[4] 张来平, 常兴华, 赵钟, 等. 计算流体力学网格生成技术[M]. 北京:科学出版社, 2017:3-6. ZHANG L P, CHANG X H, ZHAO Z, et al. Mesh generation techniques in computational fluid dynamics[M]. Beijing:Science Press, 2017:3-6(in Chinese).
[5] ALLEN C B. Automatic structured multiblock mesh generation using robust transfinite interpolation[J]. International Journal of Numerical Methods in Engineering, 2008, 74(5):697-733.
[6] CHEN J, XIAO Z, ZHENG Y, et al. Scalable generation of large-scale unstructured meshes by a novel domain decompose[J]. Advances in Engineering Software, 2018, 121:131-146.
[7] BAKER T J. Mesh generation:art or science?[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[8] DYEDOV V, EINSTEIN DR, JIAO X, et al. Variational generation of prismatic boundary-layer meshes for biomedical computing[J]. International Journal of Numerical Methods in Engineering, 2009, 79(8):907-945.
[9] ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and a multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1):47-62.
[10] 赵钟, 张来平, 赫新. 基于"各向异性"四面体网格聚合的复杂外形混合网格生成方法[J]. 空气动力学学报, 2013, 31(1):34-39. ZHAO Z, ZHANG L, HE X. Hybrid grid generation technique for complex geometries based on agglomeration of anisotropic tetrahedrons[J]. Acta Aerodynamica Sinice, 2013, 31(1):34-39(in Chinese).
[11] NAKAHASHI K. Marching grid generation for external viscous flow problems[J]. Transactions of the Japan Society for Aeronautical and Space Science, 1992, 35(108):88-102.
[12] SHAROV D, NAKAHASHI K. Hybrid prismatic/tetrahedral grid generation for viscous flow applications[J]. AIAA Journal, 1998, 36(2):157-162.
[13] GARIMELLA R V, SHEPHARD M S. Boundary layer mesh generation for viscous flow simulations[J]. International Journal of Numerical Methods in Engineering, 2000, 49(1/2):193-218.
[14] AUBRY R, LÖHNER R. On the ‘most normal’ normal[J]. Communications in Numerical Methods in Engineering, 2008, 24(12):1641-1652.
[15] AUBRY R, MESTREAU E L, DEY S, et al. On the ‘most normal’ normal-Part 2[J]. Communications in Numerical Methods in Engineering, 2015, 97:54-63.
[16] WANG Z, QUINTANAL J, CORRAL R. Accelerating advancing layer viscous mesh generation for 3D complex configurations[J]. Procedia Engineering, 2017, 203:128-140.
[17] PARK S, JEONG B, LEE J G, et al. Hybrid grid generation for viscous flow analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 71(7):891-909.
[18] DAWES W, HARVEY S, FELLOWS S, et al. Viscous layer meshes from level sets on Cartesian meshes:AIAA-2007-0555[R]. Reston:AIAA, 2007.
[19] DAWES W, HARVEY S, FELLOWS S, et al. A practical demonstration of scalable parallel mesh generation:AIAA-2009-0981[R]. Reston:AIAA, 2009.
[20] ZHENG Y, XIAO Z, CHEN J, ZHANG J. Novel methodology for viscous-layer meshing by the boundary element method[J]. AIAA Journal, 2018, 56(1):209-21.
[21] XIAO Z F, XU G, CHEN J J, et al. A tailored fast multipole boundary element method for viscous layer mesh generation[J]. Engineering Analysis with Boundary Elements, 2019, 99:268-280.
[22] 郑耀, 陈建军. 非结构网格生成:理论、算法和应用[M]. 北京:科学出版社, 2018:7-8. ZHENG Y, CHEN J J. Unstructured mesh generation:theories, algorithms and applications[M]. Beijing:Science Press, 2018:7-8(in Chinese).
[23] 孙岩, 邓小刚, 王光学, 等. 一种基于约束框架的棱柱网格生成方法[J]. 空气动力学学报, 2015, 33(3):319-324. SUN Y, DENG X G, WANG G X, et al. A prismatic grid generation method based on constrained frame[J]. Acta Aerodynamica Sinice, 2015, 33(3):319-324(in Chinese).
[24] 孙岩. 交互式棱柱网格生成方法[J]. 计算机辅助设计与图形学学报, 2016, 28(2):53-60. SUN Y. Interactive prismatic grid generation method[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(2):53-60(in Chinese).
[25] AUBRY R, LÖHNER R. Generation of viscous grids at ridges and corners[J]. International Journal of Numerical Methods in Engineering, 2009, 77(9):1247-1289.
[26] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[27] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[28] FRIEDMAN J, TILLICH JP. Wave equations for graphs and the edge-based Laplacian[J]. Pacific Journal of Mathematics, 2004, 216(2):229-266.
文章导航

/