流体力学与飞行力学

鸭式飞机矢量喷流对大迎角气动特性的影响

  • 魏中成 ,
  • 王海峰 ,
  • 袁兵 ,
  • 李盈盈
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2020-06-19

  修回日期: 2020-07-12

  网络出版日期: 2020-07-27

Canard aircraft interactive behaviors between vectoring jet and aerodynamics at high angles of attack

  • WEI Zhongcheng ,
  • WANG Haifeng ,
  • YUAN Bing ,
  • LI Yingying
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China

Received date: 2020-06-19

  Revised date: 2020-07-12

  Online published: 2020-07-27

摘要

针对单发鸭式布局飞机,通过低速风洞试验,研究了矢量喷流对飞机大迎角气动力的影响特性。研究结果表明:发动机喷口直径变大使得飞机大迎角升力和阻力系数增加,并产生低头力矩系数。喷流使得飞机大迎角升力和阻力系数明显增加,并产生低头力矩系数;大喷口状态喷流影响比小喷口状态高50%左右。发动机喷管上/下偏转时,矢量喷流对飞机上下表面气流诱导不对称,喷管上偏减小升力和阻力系数、产生抬头力矩系数,喷管下偏增加升力和阻力系数、产生低头力矩系数,且喷管下偏影响明显比上偏大。在此基础上,基于数值模拟结果对喷流与飞机主流的相互作用机理进行了分析。

本文引用格式

魏中成 , 王海峰 , 袁兵 , 李盈盈 . 鸭式飞机矢量喷流对大迎角气动特性的影响[J]. 航空学报, 2020 , 41(12) : 124434 -124434 . DOI: 10.7527/S1000-6893.2020.24434

Abstract

An experimental study on single-engine canard aircraft interactive behaviors between the vectoring jet and aerodynamics at high angles of attack is conducted in a low-speed wind tunnel. The test results indicate that increase in the engine nozzle diameter can enhance the lift and drag coefficient and produce pitch down moment at high angles of attack. Jets can significantly increase the lift and drag coefficient and also produce pitch down moment at high angles of attack. However, the increment of lift or drag and decrease of pitching caused by the jet is 50% less in case of a small nozzle than in case of a large nozzle. When the vectoring engine nozzle is deflected upward or downward, the airflows induced by the vectoring jets on the upper and lower surfaces of the aircraft are asymmetrical. The lift and drag coefficient decrease and the pitching moment increases when the jet is deflected upward, and the opposite is true when the jet is deflected downward. In addition, the effect of jets deflecting downward is noticeably larger than that of jets deflecting upward. Based on this, the flow field mechanism of interactive behaviors between the vectoring jet and the main flows is analyzed by numerical simulation.

参考文献

[1] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6):524057. WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):524057(in Chinese).
[2] 赵群力. 推力矢量在战斗机上的应用[J]. 国际航空, 1999(1):20-23. ZHAO Q L. The application of thrust vectoring on fighters[J]. International Aviation, 1999(1):20-23(in Chinese).
[3] BURSEY R, DICKINSON R. Flight test result of the F-15S/MTD thrust vectoring/thrust reversing exhaust nozzle:AIAA-1990-1906[R]. Reston:AIAA, 1990.
[4] ASBURY S C, CAPONE F J. Thrust vectoring characteristics of the F-18 high alpha research vehicle at angles of attack from 0° to 70°:AIAA-1992-3095[R]. Reston:AIAA, 1992.
[5] BARHAM R W. Thrust vector aided maneuvering YF-22 advanced tactical fighter prototype:AIAA-1994-2105[R]. Reston:AIAA,1994.
[6] WANG Z J, JIANG P, GURSUL I. Effect of thrust-vectoring jets on delta wing aerodynamics[J]. Journal of Aircraft, 2007, 44(6):1877-1888.
[7] 王晋军, 刘激瀛, 薛启智. 矢量喷流对65三角翼前缘涡破裂的影响[J]. 流体力学实验与测量, 2000,14(3):61-65. WANG J J, LIU J Y, XUE Q Z. The effects of vectored jet on leading edge vortex breakdown of 65° delta wing[J]. Experiments and Measurements in Fluid Mechanics, 2000,14(3):61-65(in Chinese).
[8] SHEU W L, LAN C E. Experimental investigation of the effect of thrust vectoring on lateral-directional aerodynamics at high angles of attack:AIAA-1994-1809[R]. Reston:AIAA,1994.
[9] DENG X Y, WANG Y K. An experimental study of interactive behaviors between vectoring jet and main flows[C]//Aerospace Science Meeting of AIAA. Reston:AIAA, 1998.
[10] 李栋, 焦予秦, 宋科. 喷流-外流干扰流场数值模拟[J]. 航空学报, 2008,29(2):292-296. LI D, JIAO Y Q, SONG K. Numerical simulation of external flow interfered by jet flow[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(2):292-296(in Chinese).
[11] WANG Y K, DENG X Y. Effects of vectoring jet on aerodynamic characteristics of aircraft[J]. Chinese Journal of Aeronautics, 1998, 11(2):81-87.
[12] 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J]. 航空学报, 2018, 39(4):121648. TANG W, HUANG Y, FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121648(in Chinese).
[13] 司芳芳, 袁先旭, 李建强,等. 推力转向喷流与高速主流干扰参数影响规律的数值模拟研究[J]. 空气动力学学报, 2012, 30(5):583-591. SI F F, YUAN X X, LI J Q, et al. The study of the parameters' infection between vectoring jet and high speed main flows interaction[J]. Acta Aerodynamica Sinica, 2012, 30(5):583-591(in Chinese).
[14] MCWATERS M A. F-35 conventional model jet-effects testing methodology:AIAA-2015-2404[R]. Reston:AIAA, 2015.
[15] 王延奎, 邓学蓥, 张祖庚. 矢量喷流下平尾偏转对飞机气动性能的影响[J].北京航空航天大学学报, 2003, 29(2):156-160. WANG Y K, DENG X Y, ZHANG Z G. Experimental investigation on effect of horizontal tail deflection on aerodynamic characteristics of aircraft under vectoring jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2):156-160(in Chinese).
[16] HITZEL S M, WEIDE E, TREMEL U. X-31A vector high angle of attack descent Euler and Navier-Stokes simulations of unsteady manoeuvres[C]//Proceedings of 23rd International Congress of Aeronautical Sciences. Toronto:ICAS Press, 2002:1-9.
[17] 李建强, 李耀华, 郭旦平, 等. 2.4米跨声速风洞推力矢量试验技术[J]. 空气动力学学报, 2016, 34(1):20-26. LI J Q, LI Y H, GUO D P, et al. The thrust vectoring experiment technique in the 2.4m×2.4m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):20-26(in Chinese).
[18] 魏中成,王晋军,袁兵.鸭式布局飞机矢量喷流对地面效应影响的风洞试验研究[J].航空学报, 2020, 41(1):123031. WEI Z C, WANG J J, YUAN B. An experimental study of canard aircraft interactive behaviors between vectoring jet and ground effect[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123031(in Chinese).
[19] 高静, 李聪, 杨勇,等. 低速风洞推力矢量试验背撑干扰特性试验研究[J]. 实验流体力学, 2005,19(3):10-13. GAO J, LI C, YANG Y, et al. Researches of dorsal support interference in low speed wind tunnel thrust vector test[J]. Journal of Experiments in Fluid Mechanics, 2005,19(3):10-13(in Chinese).
[20] 贾毅, 郑芳, 黄浩, 等. 低速风洞推力矢量试验技术研究[J]. 实验流体力学, 2014,28(6):92-97. JIA Y, ZHENG F, HUANG H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014,28(6):92-97(in Chinese).
[21] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6):523444. CEN F, NIE B W, LIU Z T, et al. Wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523444.
文章导航

/