论文

基于光场成像的快照式气膜孔三维测量技术

  • 赵圆圆 ,
  • 曾飞 ,
  • 李洋 ,
  • 甘明瑜 ,
  • 施圣贤
展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240;
    2. 中国航发湖南动力机械研究所 发动机涡轮研究部, 株洲 412002;
    3. 中国航发湖南动力机械研究所 中小型航空发动机叶轮机械湖南省重点实验室所, 株洲 412002

收稿日期: 2020-04-29

  修回日期: 2020-06-10

  网络出版日期: 2020-07-27

基金资助

国家自然科学基金(11772197)

3D measurement technique for film cooling holes based on light-field imaging

  • ZHAO Yuanyuan ,
  • ZENG Fei ,
  • LI Yang ,
  • GAN Mingyu ,
  • SHI Shengxian
Expand
  • 1. School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
    2. Engine Turbo Research, Aero-Engine Corporation of China Hunan Power Machinery Research Institute, Zhuzhou 412002, China;
    3. Hunan Provincial Key Laboratory of Medium and Small Aero Engine Impeller Machinery, Aero-Engine Corporation of China Hunan Power Machinery Research Institute, Zhuzhou 412002, China

Received date: 2020-04-29

  Revised date: 2020-06-10

  Online published: 2020-07-27

Supported by

National Natural Science Foundation of China (11772197)

摘要

叶片气膜孔的几何参数对其冷却效率具有十分重要的影响,需采取有效手段对加工的气膜孔几何参数进行检测。基于光场成像原理,初步探索了单光场相机快照式三维测量技术在气膜孔检测上的应用。与其他光学测量技术相比,该技术仅通过一次拍摄,即可快速从捕获的单张原始光场图像中计算得到气膜孔的三维点云数据,其数据采集效率很高。实验中对一组标准量块进行了测量,展示了单光场相机应用于工业级精密测量的潜力。对实际叶片上气膜孔几何参数的检测结果初步表明了该技术应用于气膜孔三维测量的可能性。由于单光场相机成像系统的结构简单,易于操作且便于与其他传感器设备集成,可为气膜孔三维测量问题提供一种新的解决方案。

本文引用格式

赵圆圆 , 曾飞 , 李洋 , 甘明瑜 , 施圣贤 . 基于光场成像的快照式气膜孔三维测量技术[J]. 航空学报, 2021 , 42(10) : 524158 -524158 . DOI: 10.7527/S1000-6893.2020.24158

Abstract

The cooling efficiency of film cooling holes is significantly affected by their geometric parameters; therefore, it is necessary to detect these parameters by effective measures. Based on the principle of light-field imaging, the application of the single light-field camera snapshot three-dimensional (3D) measurement technology in film cooling hole inspection was explored. Compared with other optical measurement technologies, this light-field based technology can quickly obtain 3D point cloud data of film cooling holes from the captured raw light-field image with only one shot, achieving high data collection efficiency. In the experiment, a set of standard gauge blocks were measured, and the experimental results demonstrate the potential of a single light-field camera for industrial-grade precision measurement. Detection results of the geometric parameters of the film cooling hole on an actual blade initially indicate the application possibility of this technique to the 3D measurement of film cooling holes. The simplicity of the single light-field imaging system makes it easy to operate and convenient to integrate with other sensor devices, therefore providing a new solution to the problem of 3D measurement of film cooling holes.

参考文献

[1] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[2] 银越千, 金海良, 陈璇. 涡轴/涡桨发动机压气机流动特点与发展趋势[J]. 航空学报, 2017, 38(9):521011. YIN Y Q, JIN H L, CHEN X. Flow features and developing trends of compressor in turboshaft/turboprop engine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):521011(in Chinese).
[3] 王呈, 刘涛, 穆轩, 等. 航空发动机叶片气膜孔测量技术研究[J]. 计测技术, 2012, 32(5):27-30. WANG C, LIU T, MU X, et al. Research on aero engine blade film hole measuring technology[J]. Metrology & Measurement Technology, 2012, 32(5):27-30(in Chinese).
[4] 陈大为, 朱惠人, 李华太, 等. 尾迹对涡轮动叶全表面气膜冷却效率的影响[J]. 航空学报, 2019, 40(3):122651. CHEN D W, ZHU H R, LI H T, et al. Effect of unsteady wake on full coverage film cooling effectiveness for a turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):122651(in Chinese).
[5] 毕超, 郝雪, 刘孟晨, 等. 基于视觉测量的回转轴线标定方法研究[J]. 红外与激光工程, 2020, 49(4):0413004. BI C, HAO X, LIU M C, et al. Study on calibration method of rotary axis based on vision measurement[J]. Infrared and Laser Engineering, 2020, 49(4):0413004(in Chinese).
[6] 关军, 王呈. 建立叶片气膜孔工件坐标系的方法研究[J]. 计测技术, 2013, 33(3):41-43. GUAN J, WANG C. Study on establishing coordinate system for workpiece of blade gas film holes[J]. Metrology & Measurement Technology, 2013, 33(3):41-43(in Chinese).
[7] 冯昆鹏. 基于四芯锥形相移光纤光栅的三维微尺度传感方法[D]. 哈尔滨:哈尔滨工业大学, 2018:1-15. FENG K P. Three-dimensional microscale sensing method based on tapered fourcores phase-shift fiber grating[D]. Harbin:Harbin Institute of Technology, 2018:1-15(in Chinese).
[8] MURALIKRISHNAN B, STONE J A, STOUP J R. Fiber deflection probe for small hole metrology[J]. Precision Engineering, 2006, 30(2):154-164.
[9] MURAKAMI H, KATSUKI A, ONIKURA H, et al. Development of a system for measuring micro hole accuracy using an optical fiber probe[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2010, 4(5):995-1004.
[10] SHETTY D, EPPES T, CAMPANA C, et al. New approach to the inspection of cooling holes in aero-engines[J]. Optics and Lasers in Engineering, 2009, 47(6):686-694.
[11] MUNKELT C, KUHMSTEDT P, ASCHERMANN L, et al. Automatic complete high-precision optical 3D measurement of air cooling-holes of gas turbine vanes for repair[C]//Optical Measurement Systems for Industrial Inspection IX. Munich:International Society for Optics and Photonics, 2015, 9525:952512.
[12] BOYER J R, MEISSNER B W, DOLL S D, et al. Method of inspecting turbine internal cooling features using non-contact scanners:U.S. Patent 7578178[P]. 2009-08-25.
[13] 穆轩. 航空发动机涡轮叶片气膜孔直径与位置度测量研究[D]. 大连:大连理工大学, 2018:6-13. MU X. Research on the aero engine blade film hole diameter and position accuracy measurement[D]. Dalian:Dalian University of Technology, 2018:6-13(in Chinese).
[14] JIN J, KIM J W, KANG C S, et al. Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process[J]. Optics Express, 2012, 20(5):5011-5016.
[15] RAMAMURTHY R, HARDING K G, LIAO Y, et al. Method and system for automated shaped cooling hole measurement:U.S. Patent 9760986[P]. 2017-09-12.
[16] 鲍晨兴, 王磊, 李凯, 等. 基于CCD的叶片气膜孔快速检测技术研究[J]. 航空精密制造技术, 2017, 53(2):52-59. BAO C X, WANG L, LI K, et al. Research on Rapid Detection Technology of Gas Film Hole Based on CCD[J]. Aviation Precision Manufacturing Technology, 2017, 53(2):52-59(in Chinese).
[17] 毕超, 郝雪, 李剑飞, 等. 气膜孔图像对焦评价函数的实验研究[J]. 宇航计测技术, 2019, 39(6):77-83. BI C, HAO X, LI J F, et al. Experimental study on focusing evaluation functions of images of film cooling hole[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(6):77-83(in Chinese).
[18] 陈慧能, 杨树彬, 杨庆玲. 工业CT在国防科技工业检测测试技术中的应用[C]//陕西省机械工程学会第十次代表大会暨学术年会论文集. 西安:陕西省机械工程学会, 2014:205-213. CHEN H N, YANG S B, YANG Q L. The Application of ICT in Testing and Measuring of Science and Techniques of defense Industry[C]//The 10th Member Congress and Academic Annual Meeting of the Shanxi Provincial Institute of Mechanical Engineering. Xi'an:Shanxi Provincial Institute of Mechanical Engineering, 2014:205-213(in Chinese).
[19] STIMPSON C K, SNYDER J C, THOLE K A, et al. Effectiveness measurements of additively manufactured film cooling holes[J]. Journal of Turbomachinery, 2018, 140(1):1-11.
[20] 董一巍, 吴宗璞, 李效基, 等. 叶片气膜孔加工与测量技术的现状及发展趋势[J]. 航空制造技术, 2018, 61(13):16-25. DONG Y W, WU Z P, LI X J, et al. Current situation and development trend of processing and measurement technology for turbine blade film cooling hole[J].Aeronautical Manufacturing Technology, 2018, 61(13):16-25(in Chinese).
[21] 隋鑫, 徐熙平, 孙健, 等. 应用多传感器技术测量微孔几何参量[J]. 光学与光电技术, 2009, 7(4):79-82. SUI X, XU X P, SUN J, et al. Microhole geometry measurement applying multi-sensor technology[J]. Optics & Optoelectronic Technology, 2009, 7(4):79-82(in Chinese).
[22] 李浩天, 许晟明, 赵洲, 等. 基于光场三维重构和PSP的曲面压力测量技术[J]. 实验流体力学, 2018, 32(3):78-84. LI H T, XU S M, ZHAO Z, et al. Curved surface pressure measurement based on light field imaging and PSP[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):78-84(in Chinese).
[23] MA H X, QIAN Z W, MU T T, et al. Fast and Accurate 3D Measurement based on light-field camera and deep learning[J]. Sensors, 2019, 19(4399):1-11.
[24] DING J F, LI H T, MA H X, et al. A novel light field imaging based 3D geometry measurement technique for turbomachinery blades[J]. Measurement Science and Technology, 2019, 30(11):115901.
[25] ADELSON E H, BERGEN J R. The plenoptic function and the elements of early vision[M]. Commonwealth of Massachusetts:Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology, 1991:3-20.
[26] ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(2):99-106.
[27] LEVOY M, HANRAHAN P. Single lens stereo with a plenoptic camera[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York:Association for Computing Machinery, 1996:31-42.
[28] LEVOY M. Light fields and computational imaging[J]. Computer, 2006, 39(8):46-55.
[29] NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report CSTR, 2005, 2(11):1-11.
[30] GEORGIEV T G, ZHENG K C, CURLESS B, et al. Spatio-angular resolution tradeoffs in integral photog-raphy[J]. Rendering Techniques, 2006, 263-272:21.
[31] SHI S X, DING J F, NEW T H, et al. Volumetric calibration enhancements for single-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(1):21.
[32] DANSEREAU D G, PIZARRO O, WILLIAMS S B. Decoding, calibration and rectification for lenselet-based plenoptic cameras[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.:IEEE Computer Society, 2013:1027-1034.
[33] BOK Y, JEON H G, KWEON I S. Geometric calibration of micro-lens-based light field cameras using line features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(2):287-300.
文章导航

/