[1] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2):193-201.
[2] SCHNEIDER M. Robust aero-thermal design of high pressure turbines at uncertain exit conditions of low-emission combustion systems[D]. Darmstadt:Darmstadt University of Technology, 2019.
[3] MASIOL M, HARRISON R M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution:A review[J]. Atmospheric Environment, 2014, 95:409-455.
[4] BUTLER T L, SHARMA O P, JOSLYN H D, et al. Redistribution of an inlet temperature distortion in an axial flow turbine stage[J]. Journal of Propulsion and Power, 1989, 5(1):64-71.
[5] JACOBI S, MAZZONI C, ROSIC B, et al. Investigation of unsteady flow phenomena in first vane caused by combustor flow with swirl[J]. Journal of Turbomachinery, 2017, 139(4):041006.
[6] 王志多. 进口热斑等非均匀性对燃气透平高压级流动与传热特性影响的研究[D]. 西安:西安交通大学,2018. WANG Z D. Study on influence of inlet hot streak and other non-uniformities on aerodynamic and heat transfer characteristics in gas turbine stage[D]. Xi'an:Xi'an Jiaotong University, 2018(in Chinese).
[7] 赵庆军. 无导叶对转涡轮流动特性分析及其进口热斑迁移机理研究[D]. 北京:中国科学院工程热物理研究所, 2007. ZHAO Q J. Investigation on flow characteristics and migration mechanisms of inlet hot streaks in a vaneless counter-rotating turbine[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Science, 2007(in Chinese).
[8] YIN H, LIU S, FENG Y, et al. Experimental test rig for combustor-turbine interaction research and test results analysis:GT2015-42209[R]. New York:ASME, 2015.
[9] 谢金伟,刘志刚,张晓东,等. 涡轮叶栅进口热斑迁移及其影响因素研究试验装置设计[J]. 燃气涡轮试验与研究, 2018, 31(2):1-7,15. XIE J W, LIU Z G, ZHANG X D, et al. Design of an experimental apparatus for turbine cascade inlet hot streak migration and influence research[J]. Gas Turbine Experiment and Research, 2018, 31(2):1-7,15(in Chinese).
[10] ASLANIDOU I. Combustor and turbine aerothermal interactions in gas turbines with can combustors[D].Oxford:University of Oxford, 2015.
[11] BACCI T. Experimental investigation on a high pressure HGV cascade in the presence of a representative lean burn aero-engine combustor outflow[D]. Florence:University of Florence, 2017.
[12] WERSCHNIK H. Aerodynamic impact of swirl combustor inflow in endwall heat transfer and the robustness of the film cooling design in an axial turbine[D]. Darmstadt:Darmstadt University of Technology, 2017.
[13] BEARD P F, ADAMS M G, NAGAWAKAR J R, et al. The LEMCOTEC 1.5 stage film-cooled HP turbine:Design, integration and testing in the oxford turbine research facility[C]//Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2019.
[14] KRUMME A, TEGELER M, GATTERMANN S. Design, integration and operation of a rotating combustor-turbine-interaction test rig within the scope of EC FP7 project factor[C]//Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2019.
[15] REHDER H J, PAHS A, BITTNER M, et al. Next generation turbine testing at DLR:GT2017-64409[R]. New York:ASME, 2017.
[16] 蒋洪德,任静,尹洪. 燃气轮机燃烧室与透平交互作用研究进展[J]. 热力透平, 2013, 42(4):211-216, 224. JIANG H D, REN J, YIN H. Recent development of gas turbine combustor and turbine interaction effects[J]. Thermal Turbine, 2013, 42(4):211-216, 224(in Chinese).
[17] 黄家骅,王会社,赵庆军,等. 涡轮进口热斑研究的进展及展望[J]. 飞航导弹,2007(10):47-50. HUANG J H, WANG H S, ZHAO Q J, et al. Review of investigation of inlet hot streak on turbines[J]. Aerodynamic Missle Journal, 2007(10):47-50(in Chinese).
[18] SIMONE S, MONTOMOLI F, MARTELLI F, et al. Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages[J]. Journal of Turbomachinery, 2011, 134(1):011012.
[19] 丰镇平,王志多,刘兆方. 燃气透平进口热斑迁移及其影响机制研究进展[J]. 中国电机工程学报, 2014, 34(29):5120-5130. FENG Z P, WANG Z D, LIU Z F. Review on research of hot streak migration mechanisms in gas turbine stage[J]. Proceedings of the CSEE, 2014, 34(29):5120-5130(in Chinese).
[20] DORNEY D J, GUNDY-BURLET K L, SONDAK D L. A survey of hot streak experiments and simulations[J]. International Journal of Turbo Jet-Engines, 1999, 16(1):1-16.
[21] SCHWAB J R, STABE R G, WHITNEY W J. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile:AIAA-1983-1175[R]. Reston:AIAA, 1983.
[22] STABE R G, WHITNEY W J, MOFITT T P. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile:AIAA-1984-1161[R]. Reston:AIAA, 1984.
[23] DORNEY D J, DAVIS R L, EDWARDS D E, et al. Unsteady analysis of hot streak migration in a turbine stage[J]. Journal of Propulsion and Power, 1992, 8(2):520-529.
[24] DORNEY D J, GUNDY-BURLET K L. Hot-streak clocking effects in a 1-1/2 stage turbine[J]. Journal of Propulsion and Power, 1996, 12(3):619-620.
[25] ROBACK R J, DRING R P. Hot streaks and phantom cooling in a turbine rotor passage:Part 1-Separate effects[J]. Journal of Turbomachinery, 1993, 115(4):657-666.
[26] ROBACK R J, DRING R P. Hot streaks and phantom cooling in a turbine rotor passage:Part 2-Combined effects and analytical modeling[J]. Journal of Turbomachinery, 1993, 115(4):667-674.
[27] SHANG T, GUENETTE G R, EPSTEIN A H, et al. The influence of inlet temperature distortion on rotor heat transfer in a transonic turbine:AIAA-1995-3042[R]. Reston:AIAA, 1995.
[28] SHANG T, EPSTEIN A H. Analysis of hot streak effects on turbine rotor heat load[J]. Journal of Turbomachinery, 1997, 119(3):544-553.
[29] 董素艳,刘松龄,朱惠人. 涡轮级进口温度分布不均匀时流场和温度场的非定常数值模拟[J]. 西北工业大学学报, 2001, 19(3):345-348. DONG S Y, LIU S L, ZHU H R. An inviscid numerical simulation of unsteady flow in turbine stage with inlet temperature distortion[J]. Journal of Northwestern Polytechnical University, 2001, 19(3):345-348(in Chinese).
[30] 董素艳,刘松龄,朱惠人. 进口热斑对涡轮级影响的非定常数值模拟[J]. 航空动力学报, 2001, 16(3):242-248. DONG S Y, LIU S L, ZHU H R. Unsteady numerical simulation on the effects of hot streak phenomena on turbine stage[J]. Journal of Aerospace Power, 2001, 16(3):242-248(in Chinese).
[31] COLBAN W F, THOLE K A, ZESS G. Combustor turbine interface studies-Part 1:Endwall effectiveness measurements[J]. Journal of Turbomachinery, 2003, 125(2):193-202.
[32] COLBAN W F, LETHANDER A T, THOLE K A, et al. Combustor turbine interface studies-Part 2:Flow and thermal field measurements[J]. Journal of Turbomachinery, 2003, 125(2):203-209.
[33] JENKINS S, VARADARAJAN K, BOGARD D G. The effects of high mainstream turbulence and turbine vane film cooling on the dispersion of a simulated hot streak[J]. Journal of Turbomachinery, 2004, 126(1):203-211.
[34] JENKINS S C, BOGARD D G. Scaling of guide vane coolant profiles and the reduction of a simulated hot streak[J]. Journal of Turbomachinery, 2007, 129(3):619-627.
[35] 闫朝,内田澄生,坂元康郎,等. 热斑对涡轮二级静叶热负荷影响的实验和数值研究[J]. 推进技术, 2004, 25(6):517-520. YAN Z, UCHIDA S, SAKAMOTO Y, et al., Experimental and numerical investigation on the effect of hot streak on the 2nd vane in turbine[J]. Journal of Propulsion Technology, 2004, 25(6):517-520(in Chinese).
[36] 刘高文,刘松龄. 热斑在1-1/2级涡轮内的非定常迁移数值模拟[J]. 航空动力学报, 2004, 19(6):855-859. LIU G W, LIU S L. Numerical simulation of unsteady hot streak migration in a 1-1/2 stage turbine[J]. Journal of Aerospace Power, 2004, 19(6):855-859(in Chinese).
[37] 刘高文,刘松龄. 用气膜冷却来防止热斑引起的涡轮叶片过热[J]. 推进技术, 2005, 26(6):485-488. LIU G W, LIU S L. Using film cooling to keep the turbine blade from overheat induced by hot streaks[J]. Journal of Propulsion Technology, 2005, 26(6):485-488(in Chinese).
[38] HE L, HALLER B R. Influence of hot streak circumferential length-scale in transonic turbine stage:GT2004-53370[R]. New York:ASME, 2004.
[39] HE L, MENSHIKOVA V, HALLER B R. Effect of hot-streak counts on turbine blade heat load and forcing[J]. Journal of Propulsion and Power, 2007, 23(6):1235-1241.
[40] BARRINGER M D, THOLE K A, POLANKA M D. Developing a combustor simulator for investigating high pressure turbine aerodynamics and heat transfer:GT2004-53613[R]. New York:ASME, 2004.
[41] BARRINGER M D, THOLE K A, POLANKA M D. Experimental evaluation of an inlet profile generator for high pressure turbine tests[J]. Journal of Turbomachinery, 2007, 129(2):382-393.
[42] BARRINGER M D, THOLE K A, POLANKA M D, et al. Migration of combustor exit profiles through high pressure turbine vanes[J]. Journal of Turbomachinery, 2009, 131(4):021010.
[43] BARRINGER M D, THOLE K A, POLANKA M D. Effects of combustor exit profiles on vane aerodynamic loading and heat transfer in a high pressure turbine[J]. Journal of Turbomachinery, 2009, 131(2):021008.
[44] AN B, LIU J, JIANG H. Numerical investigation on unsteady effects of hot streak on flow and heat transfer in a turbine stage[J]. Journal of Turbomachinery, 2009, 131(7):031015.
[45] 李宇,邹正平,刘火星,等. 叶片安装角偏差对涡轮通道内热斑迁移的影响[J]. 工程热物理学报, 2009, 30(6):944-948. LI Y, ZOU Z P, LIU H X, et al. Influence of blade-stagger departure on the migration of hot streak in turbine stage[J]. Journal of Engineering Thermophysics, 2009, 30(6):944-948(in Chinese).
[46] POVEY T, CHANA K S, JONES T V, et al. The effect of hot streak on HP vane surface and endwall heat transfer:An experimental and numerical study[J]. Journal of Turbomachinery, 2007, 129(1):32-43.
[47] POVEY T, QURESHI I. Developments in hot-streak simulators for turbine testing[J]. Journal of Turbomachinery, 2009, 131(3):031009.
[48] QURESHI I, BERETTA A, POVEY T. Effect of simulated combustor temperature nonuniformity on HP vane and end wall heat transfer:An experimental and computational investigation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 133(3):031901.
[49] QURESHI I, SMITH A D, CHANA K S, et al. Effect of temperature nonuniformity on heat transfer in an unshrouded transonic HP turbine:An experimental and computational investigation[J]. Journal of Turbomachinery, 2012, 134(1):011005.
[50] QURESHI I, SMITH A, POVEY T. HP vane aerodynamics and heat transfer in the presence of aggressive inlet swirl[J]. Journal of Turbomachinery, 2012, 135(2):021040.
[51] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part I:Vane inlet temperature profile generation and migration[J]. Journal of Turbomachinery, 2012, 134(1):011006.
[52] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part Ⅱ:Influence of inlet temperature profile on blade row and shroud[J]. Journal of Turbomachinery, 2012, 134(1):011007.
[53] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part Ⅲ:Impact of hot-streak characteristics on blade row heat flux[J]. Journal of Turbomachinery, 2012, 134(1):011008.
[54] ONG J, MILLER R J. Hot streak and vane coolant migration in a downstream rotor[J]. Journal of Turbomachinery, 2012, 134(5):051002.
[55] 薛伟鹏,曾军,黄康才. 热斑迁移路径分析方法[J]. 航空动力学报, 2013, 28(10):2302-2307. XUE W P, ZENG J, HUANG K C. Analysis method of hot streak migration avenue[J]. Journal of Aerospace Power, 2013, 28(10):2302-2307(in Chinese).
[56] KOUPPER C, CACIOLLI G A, GICQUEL L, et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbomachinery, 2014, 137(11):111007.
[57] 李雪英,任静,蒋洪德. 燃烧室温度剖面对静叶端壁冷却的影响[J]. 工程热物理学报, 2015, 36(4):752-755. LI X Y, REN J, JIANG H D. The influence of combustor outlet temperature profile on a vane endwall[J]. Journal of Engineering Thermophysics, 2015, 36(4):752-755(in Chinese).
[58] 刘兆方,王志多,丰镇平. 叶栅通道内热斑迁移受动静干涉和叶顶间隙高度影响的研究[J]. 工程热物理学报, 2015, 36(11):2344-2347. LIU Z F, WANG Z D, FENG Z P. Effect of rotor/stator interaction and tip clearance height on hot streak migration in turbine passage[J]. Journal of Engineering Thermophysics, 2015, 36(11):2344-2347(in Chinese).
[59] 王志多,张文豪,刘兆方,等. 存在热斑及总压梯度时静叶正弯对透平级气热特性的影响[J]. 工程热物理学报, 2016, 37(4):734-740. WANG Z D, ZHANG W H, LIU Z F, et al. Effects of vane position lean on aero-thermal performance of a high pressure turbine with inlet hot streak and pressure nonuniformity[J]. Journal of Engineering Thermophysics, 2016, 37(4):734-740(in Chinese).
[60] FENG Z, LIU Z, SHI Y. Effects of hot streak and airfoil clocking on heat transfer and aerodynamic characteristics in gas turbine[J]. Journal of Turbomachinery, 2016, 138(2):021002.
[61] WANG Z, LIU Z, FENG Z. Influence of mainstream turbulence intensity on heat transfer characteristics of a high pressure turbine stage with inlet hot streak[J]. Journal of Turbomachinery, 2016, 138(4):041005.
[62] CHI Z, LIU H, ZANG S, et al. Full-annulus URANS study on the transportation of combustion inhomogeneity in a four-stage cooled turbine[J]. Journal of Turbomachinery, 2019, 141(11):111003.
[63] 王天壹,宣益民. 热斑迁移路径上非定常气膜冷却特性研究[J]. 工程热物理学报, 2018, 39(9):1991-1996. WANG T Y, XUAN Y M. Investigation of unsteady film cooling characteristics on the hot streak mogration path[J]. Journal of Engineering Thermophysics, 2018, 39(9):1991-1996(in Chinese).
[64] GAETANI P, PERSICO G, PINELLI L, et al. Computational and experimental study of hot streak transport within the first stage of a gas turbine:GT2019-91276[R]. New York:ASME, 2019.
[65] JI L C, XU J Z, CHEN J. Study of hot streak effects in a counter-rotating turbine:2001-GT-0173[R]. New York:ASME, 2001.
[66] 季路成,杨吉,徐建中. 关于1+1对转涡轮中热痕现象的研究[J]. 工程热物理学报, 2001, 22(6):683-686. JI L C, YANG J, XU J Z. Investigations about the hot streak in the counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2001, 22(6):683-686(in Chinese).
[67] 王宝臣,季路成. 缘线匹配指导下热痕迁移现象的数值研究[J]. 工程热物理学报, 2009, 29(5):751-754. WANG B C, JI L C. Numerical investigation on hot streak migration under the guidance of edge-matching technology[J]. Journal of Engineering Thermophysics, 2009, 29(5):751-754(in Chinese).
[68] ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical investigation on the influence of hot streak temperature ratio in a high-pressure stage of vaneless counter-rotating turbine[J]. International Journal of Rotating Machinery, 2007, 2007:056097.
[69] 赵庆军,王会社,赵晓路,等. 无导叶对转涡轮进口热斑迁移特性分析[J]. 工程热物理学报, 2007, 28(1):40-42. ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical investigation of 3-D unsteady hot streak migration in a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2007, 28(1):40-42(in Chinese).
[70] 赵庆军,杨中,王会社,等. 进口热斑径向作用位置对无导叶对转涡轮高压级温度场的影响[J]. 工程热物理学报, 2008, 131(3):1629-1652. ZHAO Q J, YANG Z, WANG H S, et al. Effects of radial location of inlet hot streak on temperature distribution in high pressure stage of a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2008, 131(3):1629-1652(in Chinese).
[71] 赵庆军,王会社,唐菲,等. 进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析[J]. 中国科学E辑:技术科学, 2008, 38(1):55-71. ZHAO Q J, WANG H S, TANG F, et al. Investigation of influencing factors of hot streaks migration in high pressure stage of a vaneless counter-rotating turbine[J]. Science in China Series E-Technological Science, 2008, 38(1):55-71(in Chinese).
[72] ZHAO Q J, WANG H S, ZHAO X L, et al. Tip-clearance effects on hot-streak migration in low-pressure stage of vaneless counter-rotating turbine[J]. Journal of Propulsion and Power, 2009, 25(4):940-948.
[73] KHANAL B, HE L, NORTHALL J, et al. Analysis of radial migration of hot-streak in swirl flow through high-pressure turbine stage[J]. Journal of Turbomachinery, 2013, 135(7):041005.
[74] ADAMS M G, POVEY T, HALL B F, et al. Commissioning of a combined hot-streak and swirl profile generator in a transonic turbine test facility[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(3):031008.
[75] SALVADORI S, OTTANELLI L, JONSSON M, et al. Investigation of high-pressure turbine endwall film-cooling performance under realistic inlet conditions[J]. Journal of Propulsion and Power, 2012, 28(4):799-810.
[76] GILLER L, SCHIFFER H P. Interactions between the combustor swirl and the high pressure stator of a turbine:GT2012-69157[R]. New York:ASME, 2012.
[77] QURESHI I, BERETTA A, CHANA K, et al. Effects of aggressive inlet swirl on heat transfer and aerodynamics in an unshrouded transonic HP turbine[J]. Journal of Turbomachinery, 2012, 134(11):061023.
[78] ANDREINI A, CACIOLLI G, FACCHINI B, et al. Experimental investigation of the flow field and the heat transfer on a scaled cooled combustor liner with realistic swirling flow generated by a lean-burn injection system[J]. Journal of Turbomachinery, 2014, 137(3):031012.
[79] SCHMID G, KRICHBAUM A, WERSCHNIK H, et al. The impact of realistic inlet swirl in a 1-1/2 stage axial turbine:GT2014-26716[R]. New York:ASME, 2014.
[80] 刘兆方,王志多,丰镇平. 燃气透平进口旋流对热斑迁移及动叶热负荷影响的研究[J]. 工程热物理学报, 2016, 37(8):1641-1647. LIU Z F, WANG Z D, FENG Z P. Study on the effect of inlet swirl on hot streak migration and rotor heat load in gas turbine[J]. Journal of Engineering Thermophysics, 2016, 37(8):1641-1647(in Chinese).
[81] 李毅飞,马灿,苏欣荣,等. 热斑旋流对燃气透平高压静叶的影响研究[J]. 工程热物理学报, 2016, 37(6):1189-1193. LI Y F, MA C, SU X R, et al. The effect of hot streak and swirl in nozzle guide vane passage of gas turbine[J]. Journal of Engineering Thermophysics, 2016, 37(6):1189-1193(in Chinese).
[82] PERDICHIZZI A, ABDEH H, BARIGOZZI G, et al. Aerothermal performance of a nozzle vane cascade with a generic nonuniform inlet flow condition-Part I:Influence of nonuniformity location[J]. Journal of Turbomachinery, 2017, 139(3):031002.
[83] BARIGOZZI G, PERDICHIZZI A, ABDEH H, et al. Aerothermal performance of a nozzle vane cascade with a generic nonuniform inlet flow condition-Part Ⅱ:Influence of purge and film cooling injection[J]. Journal of Turbomachinery, 2017, 139(10):101004.
[84] WERSCHNIK H, SCHIFFER H P, STEINHAUSEN C. Robustness of turbine endwall film cooling design to swirling combustor inflow[J]. Journal of Propulsion and Power, 2017, 33(4):917-926.
[85] BACCI T, LENZI T, PICCHI A, et al. Flow field and hot streak migration through a high pressure cooled vanes with representative lean burn combustor outflow[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4):041020.
[86] CUBEDA S, MAZZEI L, BACCI T, et al. Impact of predicted combustor outlet conditions on the aerothermal performance of film-cooled high pressure turbine vanes[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(5):051011.
[87] 王志多,牟善聪,王志豪,等. 进口旋流对热斑和端壁槽缝泄漏流迁移影响的研究[J]. 工程热物理学报, 2019, 40(2):275-281. WANG Z D, MU S C, WANG Z H, et al. Effects of inlet swirl on the migration of hot streak and endwall slot leakage flow[J]. Journal of Engineering Thermophysics, 2019, 40(2):275-281(in Chinese).
[88] KRUMME A, BUSKE C, BACHNER J R, et al. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig:Part 1- Experimental results:GT2019-90733[R]. New York:ASME, 2019.
[89] GOEVERT S, FEDERICO F, KRUMME A, et al. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig:Part 2- Numerical modelling and simulation:GT2019-90736[R]. New York:ASME, 2019.
[90] BEARD P F, SMITH A D, POVEY T. Effect of combustor swirl on transonic high pressure turbine efficiency[J]. Journal of Turbomachinery, 2014, 136(1):011002.
[91] JOHANSSON M, POVEY T, CHANA K, et al. Effect of low-NOX combustor swirl clocking on intermediate turbine duct vane aerodynamics with an upstream high pressure turbine stage-An experimental and computational study[J]. Journal of Turbomachinery, 2017, 139(1):011006.
[92] WERSCHNIK H, HILGERT J, WILHELM M, et al. Influence of combustor swirl on endwall heat transfer and film cooling effectiveness at the large scale turbine rig[J]. Journal of Turbomachinery, 2017, 139(8):081007.
[93] BACCI T, BECCHI R, PICCHI A, et al. Adiabatic effectiveness on high-pressure turbine nozzle guide vanes under realistic swirling conditions[J]. Journal of Turbomachinery, 2019, 141(1):011009.
[94] ABDEH H, BARIGOZZI G, PERDICHIZZI A, et al. Incidence effect on the aero-thermal performance of a film cooled nozzle vane cascade[J]. Journal of Turbomachinery, 2019, 141(5):051005.
[95] CHA C M, HONG S, IRELAND P T, et al. Experimental and numerical investigation of combustor-turbine interaction using an isothermal, nonreacting tracer[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(8):081501.
[96] TURNER M G, RYDER R, NORRIS A, et al. High fidelity 3D turbofan engine simulation with emphasis on turbomachinery-combustor coupling:AIAA-2002-3769[R]. Reston:AIAA, 2002.
[97] ANDREINI A, BACCI T, INSINNA M, et al. Hybrid RANS-LES modeling of the aerothermal field in an annular hot streak generator for the study of combustor-turbine interaction[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2):021508.
[98] MIKI K, MODER J, LIOU M S. Computational study of combustor-turbine interaction[J]. Journal of Propulsion and Power, 2018, 34(6):1529-1541.
[99] MUIRHEAD K, LYNCH S. Computational study of combustor dilution flow interaction with turbine vanes[J]. Journal of Propulsion and Power, 2019, 35(1):54-71.
[100] KOUPPER C, BONNEAU G, GICQUEL L, et al. Large eddy simulations of the combustor turbine interface:Study of the potential and clocking effects:GT2016-56443[R]. New York:ASME, 2016.
[101] DUCHAIN F, DOMBARD J, GICQUEL L, et al. Integrated large eddy simulation of combustor and turbine interactions:Effect of turbine stage inlet condition:GT2017-63473[R]. New York:ASME, 2017.
[102] VAGNOLI S. Assessment of advanced numerical methods for the aero-thermal investigation of combustor-turbine interactions[D]. Florence:University of Florence, 2016.
[103] SCHNEIDER M, SCHIFFER H P, LEHMANN K. Uncertainty propagation analyses of lean burn combustor exit conditions for a robust nozzle cooling design[J]. Journal of Turbomachinery, 2020, 142(5):051003.