先进制造技术与装备专栏

含稀土TiCx增强钛基激光熔覆层组织与耐磨性

  • 张志强 ,
  • 杨凡 ,
  • 张宏伟 ,
  • 张天刚
展开
  • 1. 中国民航大学 航空工程学院, 天津 300300;
    2. 中国民航大学 工程技术训练中心, 天津 300300

收稿日期: 2020-04-20

  修回日期: 2020-05-21

  网络出版日期: 2020-07-17

基金资助

国家自然科学基金(51905536);中央高校基本科研业务费(3122019084)

Microstructure and wear resistance of TiCx reinforced Ti-based laser cladding coating with rare earth

  • ZHANG Zhiqiang ,
  • YANG Fan ,
  • ZHANG Hongwei ,
  • ZHANG Tiangang
Expand
  • 1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;
    2. Engineering Techniques Training Center, Civil Aviation University of China, Tianjin 300300, China

Received date: 2020-04-20

  Revised date: 2020-05-21

  Online published: 2020-07-17

Supported by

National Natural Science Foundation of China (51905536);Fundamental Research Funds for the Central Universities of China (3122019084)

摘要

采用同轴送粉激光熔覆技术在Ti6Al4V合金表面成功制备了含稀土CeO2的碳化钛增强钛基激光熔覆层。运用渗透探伤、光学显微镜、X射线衍射仪、扫描电镜、能谱分析仪、电子探针、显微硬度计、摩擦磨损试验机等分析和测试方法研究了碳化钛增强钛基激光熔覆层的成形质量、微观组织、元素分布、硬度和摩擦磨损性能。结果表明,涂层内无裂纹缺陷,仅在层间过渡区分布有少量气孔(孔隙率为1.65%)。涂层中物相主要包括富Ti、Cr元素的β固溶体(CrTi4)、缺位型碳化钛(TiCx)和稀土氧化物(CeO2)。熔覆层各微区的碳化钛形貌存在显著差异,熔覆层顶部和中部区域呈发达树枝晶状和针状,而结合区由针状和小尺寸不发达枝晶组成。碳化钛枝晶中碳元素分布不均匀,一次枝晶含碳量高于二次枝晶。基体相中Ni和Cr元素呈现明显偏析,而Al和V元素分布相对均匀。此外,稀土氧化物CeO2主要分布于TiCx与CrTi4相界以及CrTi4晶粒边界处。与基材相比,尽管TiCx增强钛基复合涂层具有较高的摩擦系数,但其耐磨性显著增加(提高近52%)。熔覆层和基材磨损机制均为黏着磨损和磨粒磨损的复合磨损模式,但熔覆层的磨损程度较轻。

本文引用格式

张志强 , 杨凡 , 张宏伟 , 张天刚 . 含稀土TiCx增强钛基激光熔覆层组织与耐磨性[J]. 航空学报, 2021 , 42(7) : 624115 -624115 . DOI: 10.7527/S1000-6893.2020.24115

Abstract

Titanium carbide reinforced titanium-based cladding coating with rare earth CeO2 on Ti6Al4V surface is successfully prepared by the coaxial powder-feeding laser cladding technology. The forming quality, microstructure, element distribution, hardness, and friction and wear properties are investigated by penetration inspection, optical microscopes, X-ray diffractometers, scanning electron microscopes, energy spectrum analyzers, electro-probe microanalyzers, microhardness, and friction and wear testing methods. The results show no crack defects in the coating, with only a few pores distributed in the interlayer transition zone (the porosity rate 1.65%). The main phases of the coating include β solid solution (CrTi4) which is rich in Ti and Cr elements, vacant titanium carbide (TiCx) and rare earth oxide (CeO2). Significant differences exist in the morphologies of titanium carbides in different zones of the cladding coating. The titanium carbides in the top and middle zones of the cladding coating exhibit well-developed dendritic and needle-like shapes, while the bonding zone consists of needle-like and small-sized undeveloped dendrites. The distribution of the carbon element in the titanium carbide dendrites is relatively heterogeneous, and the carbon content of the primary dendrites is higher than that of the secondary dendrites. Ni and Cr elements in the matrix phase present an obvious segregation phenomenon, while the distribution of Al and V elements are relatively uniform. In addition, rare earth oxide CeO2 is mainly distributed at the interphase boundary between TiCx and CrTi4 as well as the CrTi4 grain boundary. Compared with the substrate, although the TiCx reinforced titanium-based composite coating exhibits a higher friction coefficient, the wear resistance is significantly increased (by nearly 52%). Both the wear mechanisms of the cladding coating and the substrate are of composite wear modes combining adhesive wear with abrasive wear; however, the cladding coating displays a lighter degree.

参考文献

[1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4):44-50. ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4):44-50(in Chinese).
[2] 丁文锋,奚欣欣,占京华,等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
[3] MOLINARI A, STRAFFELINI G, TESI B, et al. Dry sliding wear mechanisms of the Ti6Al4V alloy[J]. Wear, 1997, 208(1-2):105-112.
[4] QIU M, ZHANG Y Z, YANG J H, et al. Microstructure and tribological characteristics of Ti-6Al-4V alloy against GCr15 under high speed and dry sliding[J]. Materials Science and Engineering A, 2006, 434(1):71-75.
[5] REVANKAR G D, SHETTY R, RAO S S, et al. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process[J]. Journal of Materials Research and Technology, 2017, 6(1):13-32.
[6] MATSUURA K, KUDOH M. Surface modification of titanium by a diffusional carbo-nitriding method[J]. Acta Materialia, 2002, 50(10):2693-2700.
[7] FENG X G, ZHANG K F, ZHOU H, et al. Characterization of Ti6Al4V alloy with N+C, Ti+N and Ti+C ion implantation[J]. Rare Metal Materials and Engineering, 2019, 48(5):1447-1453.
[8] 姬寿长,李争显,杜继红,等. Ti6Al4V合金表面超音速火焰喷涂WC-12Co涂层组织及相分析[J]. 稀有金属材料与工程, 2012, 41(11):2005-2009. JI S C, LI Z X, DU J H, et al. Microstructure and phase analysis of WC-12Co coatings sprayed on Ti6Al4V alloy by HVOF[J]. Rare Metal Materials and Engineering, 2012, 41(11):2005-2009(in Chinese).
[9] 李文虎. Mo/TiC含量对Mo2FeB2-TiC复相金属陶瓷组织和性能的影响[J]. 金属热处理, 2019, 44(8):73-77. LI W H. Effect of Mo/TiC content on microstructure and properties of Mo2FeB2-TiC multiphase cermets[J]. Heat Treatment of Metals, 2019, 44(8):73-77(in Chinese).
[10] 刘海. SiBCN陶瓷与TC4钛合金的钎焊工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2016. LIU H. Research on processing and mechanism of brazing SiBCN ceramics and TC4 titanium alloy[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[11] MAN H C, ZHANG S, CHENG F T, et al. Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding[J]. Scripta Materialia, 2001, 44(12):2801-2807.
[12] FAN H M, LIU H Q, REN J, et al. Microstructural characteristics and wear properties of NiCr/Cr3C2-WS2 self-lubricant wear-resistant composite coating on Ti6Al4V by laser cladding[J]. Applied Mechanics and Materials, 2013, 395-396(2013):814-817.
[13] TIAN Y S, CHEN C Z, CHEN L X, et al. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique[J]. Scripta Materialia, 2006, 54(5):847-852.
[14] 张光耀,王成磊,高原,等. 铝合金表面激光熔覆CeO2+Ni60A熔覆层的组织及耐磨性[J]. 稀有金属材料与工程, 2015, 44(5):1229-1233. ZHANG G Y, WANG C L, GAO Y, et al. Microstructure and wear resistance of CeO2 +Ni60A composite coating on aluminum alloys by laser cladding[J]. Rare Metal Materials and Engineering, 2015, 44(5):1229-1233(in Chinese).
[15] LIU Y N, SUN R L, NIU W, et al. Effects of CeO2 on microstructure and properties of TiC/Ti2Ni reinforced Ti-based laser cladding composite coatings[J]. Optics and Lasers in Engineering, 2019, 120:84-94.
[16] 刘頔,李敏,黄坚,等. CeO2含量对激光熔覆TiB/TiN涂层显微组织和性能的影响[J]. 中国激光, 2017, 44(12):1202009. LIU D, LI M, HUANG J, et al. Effect of CeO2 content on microstructure and properties of TiB/TiN coating by laser cladding[J]. Chinese Journal of Lasers, 2017, 44(12):1202009(in Chinese).
[17] 赵卫民,赫庆坤,韩彬,等. TiC-NiCrBSi复合材料的激光熔覆成形性分析[J]. 焊接学报, 2010, 31(6):25-28, 32. ZHAO W M, HE Q K, HAN B, et al. Formation of laser cladding layer of TiC-NiCrBSi composites[J]. Transactions of the China Welding Institution, 2010, 31(6):25-28, 32(in Chinese).
[18] 刘文今,曾大本,黄惠松. 稀土金属氧化物涂层对铸铁激光强化区组织和性能的影响[J]. 中国激光, 1992, 19(8):613-617. LIU W J, ZENG D B, HUANG H S. Influence of rare-earth metal oxide coating on the structure and properties of laser strengthened area of cast iron[J]. Chinese Journal of Lasers, 1992, 19(8):613-617(in Chinese).
[19] 赵玉珍,史耀武. 表面活性元素硫对焊接熔池中流体流动方式和熔池深宽比的影响[J]. 钢铁研究学报, 2004, 16(4):7-10. ZHAO Y Z, SHI Y W. Effect of surface-active element sulfur on flow pattern and aspect ratio of weld pool[J]. Journal of Iron and Steel Research, 2004, 16(4):7-10(in Chinese).
[20] 陈静,张凤英,谭华,等. 激光多层熔覆沉积预混合Ti-xAl-yV合金粉末在熔池中的熔化与偏析行为[J]. 中国激光, 2010, 37(8):2154-2159. CHEN J, ZHANG F Y, TAN H, et al. Alloying mechanics in moving melt pool during laser solid forming from blended elemental powders[J]. Chinese Journal of lasers, 2010, 37(8):2154-2159(in Chinese).
[21] YU S M, LIU D X, ZHANG X H, et al. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy[J]. Applied Surface Science, 2015, 353:995-1002.
[22] LIPATNIKOV V N, REMPEL A A, GUSEV A I. Atomic ordering and hardness of nonstoichiometric titanium carbide[J]. International Journal of Refractory Metals and Hard Materials, 1997, 15(1-3):61-64.
[23] 金云学,曾松岩,张二林,等. TiC/Ti合金中共晶TiC形态的形成机制研究[J]. 稀有金属材料与工程, 2003, 32(06):451-455. JIN Y X, ZENG S Y, ZHANG E L, et al. Forming mechanism of morphologies of eutectic TiC in TiC/Ti alloys[J]. Rare Metal Materials and Engineering, 2003, 32(6):451-455(in Chinese).
[24] 吕维洁,杨志峰,张荻,等. 原位合成钛基复合材料增强体TiC的微结构特征[J]. 中国有色金属学报, 2002, 12(3):511-515. LV W J, YANG Z F, ZHANG D, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3):511-515(in Chinese).
[25] 陈帅,陶凤和,贾长治. 选区激光熔化4Cr5MoSiV1模具钢显微组织及显微硬度研究[J]. 中国激光, 2019, 046(1):102007. CHEN S, TAO F H, JIA C Z. Microstructure and micro-hardness of 4Cr5MoSiV1 die steels fabricated by selective laser melting[J]. Chinese Journal of lasers, 2019, 046(1):102007(in Chinese).
[26] WEI D B, ZHANG P Z, YAO Z J, et al. Oxidation of double-glow plasma chromising coating on TC4 titanium alloys[J]. Corrosion Science, 2013, 66:43-50.
[27] 吴晓东,杨冠军,葛鹏,等. β钛合金及其固态相变的归纳[J]. 钛工业进展, 2008, 25(5):1-6. WU X D, YANG G J, GE P, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008, 25(5):1-6(in Chinese).
[28] ZHANG S, WU W, WANG M C, et al. Laser induced TiC particle reinforced composite layer on Ti6Al4V and their microstructural characteristics[J]. Transactions of Nonferrous Metals Society of China, 2000, 10(1):6-9.
[29] 王海燕,高雪云,任慧平,等. 稀土Ce在α-Fe中占位倾向与作用机理的密度泛函理论研究[J]. 稀有金属材料与工程, 2014, 43(11):2739-2742. WANG H Y, GAO X Y, REN H P, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014, 43(11):2739-2742(in Chinese).
[30] 张光耀,王成磊,高原,等. 稀土对6063Al镍基激光熔覆层组织及摩擦磨损性能的影响[J]. 摩擦学学报, 2015, 35(3):335-341. ZHANG G Y, WANG C L, GAO Y, et al. Effect of rare earth on the microstructure and tribological properties of laser cladding Ni-based coatings on 6063 Al[J]. Tribology, 2015, 35(3):335-341(in Chinese).
[31] 赵勋. 原位自生TiC增强钛基复合材料的制备与性能研究[D]. 北京:北京交通大学, 2019. ZHAO X. Preparation and properties of in-situ TiC reinforced titanium matrix composites[D]. Beijing:Beijing Jiaotong University, 2019(in Chinese).
[32] 潘博,黄怡晨,李俐群,等. 多次激光修复对ZTC4钛合金组织与硬度的影响[J]. 中国激光, 2019, 46(10):1002011. PAN B, HUANG Y C, LI L Q, et al. Effects of multiple laser repairs on microstructure and hardness of ZTC4 titanium alloy[J]. Chinese Journal of Lasers, 2019, 46(10):1002011(in Chinese).
[33] VASANTHAKUMAR K, KARTHISELVA N S, CHAWAKE N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures[J]. Journal of Alloys and Compounds, 2017, 709(2017):829-841.
[34] 张秉刚,王廷,陈国庆,等. TC21钛合金电子束焊缝精细组织及其对硬度的影响[J]. 中国有色金属学报, 2010, 20(S1):829-832. ZHANG B G, WANG T, CHEN G Q, et al. Fine microstructure and its effect on hardness of electron beam welding joint of TC21 Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):829-832(in Chinese).
[35] 吴欢,赵永庆,葛鹏,等. β稳定元素对钛合金α相强化行为的影响[J]. 稀有金属材料与工程, 2012, 41(5):805-810. WU H, ZHAO Y Q, GE P, et al. Effect of β stabilizing elements on the strengthening behavior of titanium α phase[J]. Rare Metal Materials and Engineering, 2012, 41(5):805-810(in Chinese).
[36] GARDOS M N. Magnéli phases of anion-deficient rutile as lubricious oxides. Part I. Tribological behavior of single-crystal and polycrystalline rutile (Ti<i>nO2n-1)[J]. Tribology Letters, 2000, 8(2-3):79-96.
[37] GURAPPA I. Protection of titanium alloy components against high temperature corrosion[J]. Materials Science and Engineering A (Structural Materials:Properties, Microstructure and Processing), 2003, A356:372-380.
[38] 吴小红,罗军明,黄俊,等. 微波烧结TiC/Ti6Al4V复合材料的高温氧化行为[J]. 复合材料学报, 2017, 34(1):135-141. WU X H, LUO J M, HUANG J, et al. High temperature oxidation behavior of microwave sintering TiC/Ti6Al4V composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1):135-141(in Chinese).
[39] 姚小飞,谢发勤,韩勇,等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 41(8):1463-1466. YAO X F, XIE F Q, HAN Y, et al. Effects of temperature on wear properties and friction coefficient of TC4 alloy[J]. Rare Metal Materials and Engineering, 2012, 41(8):1463-1466(in Chinese).
[40] STRAFFELINI G. Mild sliding wear of Fe-0.2%C, Ti-6%Al-4%V and Al-7072:a comparative study[J]. Tribology Letters, 2011, 41(1):227-238.
[41] SONG S H, SUN H J,WANG M. Effect of rare earth cerium on brittleness of simulated welding heat-affected zones in a reactor pressure vessel steel[J]. Journal of Rare Earths, 2015, 33(11):1204-1211.
[42] 匡建新,汪新衡,刘安民,等. 稀土对激光熔覆金属陶瓷复合层的影响[J]. 润滑与密封, 2007, 32(6):87-89. KUANG J X, WANG X H, LIU A M, et al. Effects of CeO2 on Ni-based metal-ceramic compound coatings by laser cladding[J]. Lubrication Engineering, 2007, 32(6):87-89(in Chinese).
[43] 邱明,张永振,杨建恒,等. 摩擦热对Ti6Al4V合金摩擦磨损性能的影响[J]. 摩擦学学报, 2006, 26(3):203-207. QIU M, ZHANG Y Z, YANG J H, et al. Effects of friction heat on tribological properties of Ti6Al4V alloy sliding against GCr15 steel[J]. Tribology, 2006, 26(3):203-207(in Chinese).
文章导航

/