流体力学与飞行力学

基于径向基神经网络的气动热预测代理模型

  • 张智超 ,
  • 高太元 ,
  • 张磊 ,
  • 拓双芬
展开
  • 北京机电工程总体设计部, 北京 100039

收稿日期: 2020-04-30

  修回日期: 2020-06-19

  网络出版日期: 2020-07-10

Aeroheating agent model based on radial basis function neural network

  • ZHANG Zhichao ,
  • GAO Taiyuan ,
  • ZHANG Lei ,
  • TUO Shuangfen
Expand
  • Beijing System Design Institute of Electro-mechanic Engineering, Beijing 100039, China

Received date: 2020-04-30

  Revised date: 2020-06-19

  Online published: 2020-07-10

摘要

为快速获取高超声速飞行器表面热流数据并缩短飞行器气动热设计周期,提出了一种基于径向基神经网络的气动热快速预测代理模型方法。首先,在飞行器表面每一个离散化的网格节点单独构造一种正则化的径向基神经网络。随后,通过训练集对所有网络同时进行训练,获得各自网络的连接权值。最后,所有网格节点的神经网络协同预测飞行器表面不同位置的热流。对NASA火星实验室的椭圆钝化高超声速飞行器的应用表明,所提出的代理模型方法在模型训练完成后能够快速进行飞行器表面热流预测,并且模型具有良好的泛化能力,在驻点及迎风大面积区域热流预测结果与数值模拟的偏差在10%以内。

本文引用格式

张智超 , 高太元 , 张磊 , 拓双芬 . 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021 , 42(4) : 524167 -524167 . DOI: 10.7527/S1000-6893.2020.24167

Abstract

An aeroheating agent model based on the radial basis function neural network is proposed to rapidly acquire heat flux on the surface of hypersonic vehicles and shorten the aeroheating design cycle. A regularization radial basis function neural network is firstly constructed on each grid node of the solid surface, followed by the acquisition of the connection weights of different nerve cells through simultaneous training of all neural networks based on the data of the train set. Finally, the heat flux results of different positions on the surface of vehicles are predicted synergistically by the neural networks on grid nodes. The simulation results of the elliptical blunt vehicle designed by the Mars Science Laboratory of NASA indicate that the agent model can be employed to rapidly predict heat flux of hypersonic vehicles with good generalization capability. In addition, the results of heat flux on the stagnation point and the windward wall prove that the heat flux deviations between the agent model and numerical simulation are smaller than 10%.

参考文献

[1] 彭志雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[2] 刘房彬, 袁军娅. 火星再入飞行器风洞实验与真实飞行之间相关性的探讨[J]. 北京航空航天大学学报, 2019, 45(4):787-795. LIU F B, YUAN J Y. Discussion on correlation between wind tunnel test and flight of Mars reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4):787-795(in Chinese).
[3] 陶阳, 宗群, 曾凡林. 高超声速飞行器气动模型数据拟合方法研究[C]//第三十一届中国控制会议论文集. 北京:中国自动化学会控制理论专业委员会, 2012:1275-1278. TAO Y, ZONG Q, ZENG F L. Research on data fitting method of aerodynamic model of hypersonic vehicle[C]//Proceedings of the 31 st Chinese Control Conference. Beijing:Technical Committee on Control Theory, Chinese Association of Automation, 2012:1275-1278(in Chinese).
[4] DOWELL E H. Eigenmode analysis in unsteady aerodynamics:Reduced order models[J]. AIAA Journal, 1996, 34(8):1578-1583.
[5] SILVA W. Identification of linear and nonlinear aerodynamic impulse responses using digital filter techniques:AIAA-1997-3712[R]. Reston:AIAA, 1997.
[6] 陈刚, 李跃名. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advance in Mechanics, 2011, 41(6):686-701(in Chinese).
[7] 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法[J]. 航空学报, 2020, 41(10):123815. ZHANG W, GAO Z H, ZHOU L, et al. Adaptive parameterization method for surrogate-based global optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123815(in Chinese).
[8] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241.
[9] 聂春生, 黄建栋, 王迅, 等. 基于POD方法的复杂外形飞行器热环境快速预测方法[J]. 空气动力学学报, 2017, 35(6):760-765. NIE C S, HUANG J D, WANG X, et al. Fast aeroheating prediction method for complex shape vehicles based on proper orthogonal decomposition[J]. Acta Aerodynamica Sinica, 2017, 35(6):760-765(in Chinese).
[10] 张天娇, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1):1-11. ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1):1-11(in Chinese).
[11] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化设计中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese).
[12] 王孝学. RBF神经网络在再入体气动参数辨识中的应用研究[J]. 导弹与航天运载技术, 2002(6):5-8. WANG X X. Application of a RBF neural network in aerodynamic parameter indentification of a reentry body[J]. Missiles and Space Vehicles, 2002(6):5-8(in Chinese).
[13] 张锋涛, 崔凯, 杨国伟, 等. 基于神经网络技术的乘波体优化设计[J]. 力学学报, 2009, 41(3):418-424. ZHANG F T, CUI K, YANG G W, et al. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3):418-424(in Chinese).
[14] 寇家庆, 张伟伟. 基函数宽度对递归RBF神经网络气动力模型精度的影响研究[J]. 航空工程进展, 2015, 6(3):261-270. KOU J Q, ZJAMG W W. Research on the effects of function widths of aerodynamic modeling based on recursive RBF neural network[J]. Advances in Aeronautical Science and Engineering, 2015, 6(3):261-270(in Chinese).
[15] 白俊强, 王丹, 何小龙, 等. 改进的RBF神经网络在翼梢小翼优化设计中的应用[J]. 航空学报, 2014, 35(7):1865-1873. BAI J Q, WANG D, HE X L, et al. Application of an improved RBF neural network on aircraft winglet optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1865-1873(in Chinese).
[16] 尹明朗, 寇家庆, 张伟伟. 一种高泛化能力的神经网络气动力降阶模型[J]. 空气动力学学报, 2017, 35(2):205-213. YIN M L, KOU J Q, ZHANG W W. A reduced-order aerodynamic model with high generalization capability based on neural network[J]. Acta Aerodynamica Sinica, 2017, 35(2):205-213(in Chinese).
[17] 张栋. 飞行仿真气动数据处理的神经网络应用[J]. 航空计算技术, 2002, 32(4):12-19. ZHANG D. Numerical simulation of a mixed compression supersonic inlet flow[J]. Aeronautical Computer Technique, 2002, 32(4):12-19(in Chinese).
[18] BROOMHEAD D S, LOWE D. Multivariable functional interpolation and adaptive networks[J]. Complex System, 1988, 2(3):321-355.
[19] MOODY J, DARKEN C J. Fast learning in network of locally-tuned processing units[J]. Neural Computation, 1989, 1(2):281-294.
[20] HOLLIS B R, HOLLINGSWORTH K E. Laminar, transitional, and turbulent heating on mid lift-to-drag ratio entry vehicles[J]. Journal of Spacecraft and Rockets, 2013, 50(5):937-949.
[21] 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4):594-600. ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterion in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4):594-600(in Chinese).
[22] ZHANG Z C, GAO Z X, JIANG C W, et al. A RANS model correction on unphysical over-prediction of turbulent quantities across shock wave[J]. International Journal of Heat and Mass Transfer, 2017, 106:1107-1119.
文章导航

/