针对农用无人机超低空表型遥感和喷药精准悬停易受地效扰动问题,提出了一种自适应ADRC姿态控制器。首先设计了基于ADRC的姿态控制器,结合四旋翼无人机平台在0.9~1.1、1.1~1.3、1.4~1.6、2.0~2.4、2.5~2.9、3.3~3.6 m/s侧向水平风、0.9~1.1 m/s (11°)、1.1~1.3 m/s (13°)、1.4~1.6 m/s (18°)、1.8~2.0 m/s (18°)、2.1~2.5 m/s (18°)前俯向风和侧俯向风下进行干扰的预测和控制量的补偿实验。实验结果显示使用ADRC姿态控制器后无人机抗风性能有较大提升。然而在存在初始误差时,ADRC固定带宽无法满足要求,进一步设计了自适应ADRC姿态控制器(ILC-ADRC)。通过迭代学习控制在线优化自抗扰控制器带宽,实现了不同增益观测器的自适应整定。实验结合四旋翼无人机平台分别进行了机头实际方向与期望方向偏离55°、90°、180°,水平风速1.1~1.3、1.4~1.6、2.0~2.4、2.5~2.9 m/s下使用ADRC和ILC-ADRC的对比。实验结果显示采用ILC-ADRC姿态控制器,在150次控制周期内,偏航角误差均在-15°~15°之间,满足四旋翼无人机偏航角控制精度要求,同时调节时间分别缩短了40%,16.67%,12.5%,53.33%,10.34%,13.95%,27.27%,58.66%,11.86%。
An adaptive Active Disturbance Rejection Control (ADRC) attitude controller is proposed to solve the problem that the ultralow altitude phenotype remote sensing and precise hovering during spraying of agricultural UAVs are easily disturbed by ground effects. First, an attitude controller based on ADRC is designed, and an interference prediction and control amount compensation experiment is performed under lateral horizontal wind of 0.9-1.1, 1.1-1.3, 1.4-1.6, 2.0-2.4, 2.5-2.9, 3.3-3.6 m/s, and forward pitch and side pitch wind of 0.9-1.1m/s (11 °), 1.1-1.3 m/s (13 °), 1.4-1.6 m/s (18 °), 1.8-2.0 m/s (18 °), 2.1-2.5 m/s (18 °). The experimental results show that the wind resistance of the UAV has been significantly improved by the ADRC attitude controller. However, the ADRC fixed bandwidth cannot meet the requirements when an initial error exists. Therefore, an adaptive ADRC attitude controller (ILC-ADRC) is further designed to optimize the bandwidth of the ADRC controller online to achieve adaptive tuning of different gain observers. Experiments are conducted to deviate the actual direction of the head from the desired direction by 55 °, 90 °, 180 °, with the horizontal wind speeds of 1.1-1.3, 1.4-1.6, 2.0-2.4, 2.5-2.9 m/s. The results show that with the ILC-ADRC attitude controller, the yaw angle error is within -15 ° -15 ° within 150 control cycles, satisfying the control accuracy of the yaw angle of the four-rotor UAV, and the stability time is shortened by 40%, 16.67%, 12.5%, 53.33%, 10.34%, 13.95%, 27.27%, 58.66%, 11.86%, respectively.
[1] 张自超, 韩宇, 陈建, 等. 基于无人机遥感数据的生态渠系信息提取[J].排灌机械工程学报, 2018, 36(10):1006-1011. ZHANG Z Z, HAN Y, CHEN J, et al. Information extraction of ecological canal system based on remote sensing data of unmanned aerial vehicle[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(10):1006-1011(in Chinese).
[2] 王术波, 韩宇, 陈建, 等. 基于深度学习的无人机遥感生态灌区杂草分类[J].排灌机械工程学报, 2018, 36(11):1137-1141. WANG S B, HAN Y, CHEN J, et al. Weed classification of remote sensing by UAV in ecological irrigation areas based on deep learning[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(11):1137-1141(in Chinese).
[3] WANG S B, HAN Y, CHEN J, et al. A transfer-learning-based feature classification algorithm for UAV imagery in crop risk management[J]. Desalination and Water Treatment, 2020, 181:330-337.
[4] 李建伟. 垂直起降无人机的自适应PID控制器研究[D]. 哈尔滨:哈尔滨工业大学, 2019. LI J W. Research on adaptive PID controller for vto tailsitter UAV[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese).
[5] ERKOL H O. Attitude controller optimization of four-rotor unmanned air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1):42-49.
[6] NGUYEN K D, HA C. Design of synchronization controller for the station-keeping hovering mode of quad-rotor unmanned aerial vehicles[J]. International Journal of Aeronautical & Space Sciences, 2019, 20(1):228-237.
[7] ULAMIN R, INAYAT I, AIJUN L, et al. A bio-inspired global finite time tracking control of four-rotor test bench system[J]. Computers, Materials & Continua, 2018, 57(3):365-388.
[8] 汪梓童. 四旋翼无人机姿态控制及抗干扰研究[D]. 南京:南京邮电大学,2019. WANG Z T. Research on attitude control and anti-interference of quadrotor UAV[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019(in Chinese).
[9] SAIF A W A, ALIYU A, DHAIFALLAH M A, et al. Decentralized backstepping control of a quadrotor with tilted-rotor under wind gusts[J]. International Journal of Control, Automation and Systems, 2018, 16(5):2458-2472.
[10] KHOSRAVIAN E, MAGHSOUDI H. Design of an intelligent controller for station keeping, attitude control, and path tracking of a quadrotor using recursive neural networks[J]. International Journal of Engineering, 2019, 32(5):747-758.
[11] GUZEY H M, DIERKS T, JAGANNATHAN S, et al. Modified consensus-based output feedback control of quadrotor UAV formations using neural networks[J]. Journal of Intelligent & Robotic Systems, 2019, 94(1):283-300.
[12] HAN J. From PID to active disturbance rejection control[J]. IEEE transactions on Industrial Electronics, 2009, 56(3):900-906.
[13] 伍咏成, 陈自力, 苏立军, 等. 基于模糊LADRC的倾转四旋翼无人机纵向姿态控制[J]. 飞行力学, 2020, 38(3):28-33. WU Y C, CHEN Z L, SU L J, et al. Longitudinal attitude control of quad tilt-rotor UAV based on fuzzy LADRC[J]. Flight Dynamics, 2020, 38(3):28-33(in Chinese).
[14] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J]. 航空学报, 2019,40(1):323490. FEI L, DUAN H B, XU X B, et al. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(1):323490(in Chinese).
[15] XI W, WANG Y, CHEN B, et al. Iterative learning control of robot based on artificial bee colony algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2019, 233(9):1221-1238.
[16] LI L, XIAO J, ZOU Y, et al. Time-optimal path tracking for robots a numerical integration-like approach combined with an iterative learning algorithm[J]. Industrial Robot:The International Journal of Robotics Research and Application, 2019,46(6):763-778.
[17] 杨敬伟. 基于修改参考输入的迭代学习轮廓补偿算法[D]. 哈尔滨:哈尔滨工业大学,2019. YANG J W. Iterative learning contour compensation algorithm based on modified reference input[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese).
[18] VASSILAKI M. A robust iterative learning control algorithm for uncertain power systems[C]//Electricity Distribution, 2016:153-171.
[19] 李家豪. 自抗扰控制的改进及其在四旋翼无人机上的应用[D].厦门:厦门大学,2018. LI J H. Improvement of ADRC with applications to quadrotor UAVs[D]. Xiamen:Xiamen University, 2018(in Chinese).
[20] 邵书义, 陈谋, 招启军. 基于干扰观测器的四旋翼无人机离散时间容错控制[J]. 航空学报,2020,41(S1):724283. SHAO Y S, CHEN M, ZHAO Q J. Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica,2020,41(S1):724283(in Chinese).
[21] MAREELS I M Y, PENFOLD H B, EVANS R J. Controlling nonlinear time-varying systems via Euler approximations[J]. Automatica, 1992, 28(4):681-696.