电子电气工程与控制

复杂环境下考虑动力学约束的翼伞轨迹规划

  • 孙昊 ,
  • 孙青林 ,
  • 滕海山 ,
  • 周朋 ,
  • 陈增强
展开
  • 1. 南开大学 人工智能学院, 天津 300350;
    2. 北京空间机电研究所, 北京 100094;
    3. 航天科技集团有限公司 航天进入减速与着陆技术实验室, 北京 100094

收稿日期: 2020-05-27

  修回日期: 2020-06-15

  网络出版日期: 2020-07-06

基金资助

国家自然科学基金(61973172,61973175,62003177);天津市科学基金重点项目(19JCZDJC32800);博士后基金(2020M670633,2020M670045)

Trajectory planning for parafoil system considering dynamic constraints in complicated environment

  • SUN Hao ,
  • SUN Qinglin ,
  • TENG Haishan ,
  • ZHOU Peng ,
  • CHEN Zengqiang
Expand
  • 1. College of Artificial Intelligence, Nankai University, Tianjin 300350;
    2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094;
    3. Laboratory of Aerospace Entry, Descent and Landing Technology, China Aerospace Science and Technology Corporation, Beijing 100094

Received date: 2020-05-27

  Revised date: 2020-06-15

  Online published: 2020-07-06

Supported by

The National Natural Science Foundation of China(61973172, 61973175,62003177); The Key Technologies Research and Development Program of Tianjin(19 JCZDJC32800); China Postdoctoral Science Foundation(2020M670633, 2020M670045)

摘要

翼伞系统具有大惯性、强非线性等特征,而基于传统质点模型所规划的目标轨迹难以满足复杂环境下的系统动力学约束,因此在轨迹规划中采用高自由度动力学模型也就成为了计算翼伞真实运动轨迹的必然趋势。然而,翼伞的动力学模型更加复杂,目前迫切需要解决的问题就是保证规划轨迹平滑、稳定。针对该问题,本文将建立精确的翼伞六自由度动力学模型,将其引入翼伞归航的轨迹规划中,并通过改进高斯伪谱法,设计一种基于分段点规划、离散点初次规划、离散点自重构的三阶轨迹优化策略。仿真结果表明,所提算法可解决传统算法在应用动力学模型后难以得到稳定轨迹的问题,并实现复杂环境下的精确地形规避,确保规划轨迹满足翼伞的非线性动力学约束。

本文引用格式

孙昊 , 孙青林 , 滕海山 , 周朋 , 陈增强 . 复杂环境下考虑动力学约束的翼伞轨迹规划[J]. 航空学报, 2021 , 42(3) : 324301 -324301 . DOI: 10.7527/S1000-6893.2020.24301

Abstract

Because of the large inertia and strong nonlinearity of the parafoil system, the object trajectory based on the mass model cannot satisfy the dynamic constraints of the parafoil under complicated terrain conditions. Therefore, application of high-order dynamic models to trajectory planning becomes an inevitable trend in calculating a real system trajectory. However, the dynamic model of the parafoil is complicated. Currently, one of the urgent problems to be solved is to ensure smooth and stable trajectories. To overcome this difficulty, this study builds an accurate six degree-of-freedom dynamic model of the parafoil which is then introduced into the trajectory planning. A multi-stage trajectory planning strategy is designed by improving the Gauss pseudo-spectrum method based on segment point planning, initial discrete point planning and discrete point self-configuration. The simulation results show the effectiveness of the proposed algorithm in overcoming the difficulty of obtaining a stable trajectory with a dynamic model by the traditional planning method. Accurate terrain avoidance is realized under complex external conditions, and the planning trajectory can satisfy the dynamic constraints of the parafoil.

参考文献

[1] MONTALVO C, COSTELLO M. Avoiding lockout instability for towed parafoil systems[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5):985-995.
[2] TANAKA M, TANAKA K, WANG H. Practical model construction and stable control of an unmanned aerial vehicle with a parafoil-type wing[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 49(6):1291-1297.
[3] WARD M, MARK C. Adaptive glide slope control for parafoil and payload aircraft[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4):1019-1034.
[4] DUNKER S, HUISKEN J, MONTAGUE D, et al. Guided Parafoil High Altitude Research (GPHAR) flight at 57,122 ft[C]//AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015.
[5] CACAN M, COSTELLO M, SCHEUERMANN E. Global positioning system denied navigation of autonomous parafoil systems using beacon measurements from a single location[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(4):041004.
[6] DEK C, OVERKAMP J, TOETER A, et al. A recovery system for the key components of the first stage of a heavy launch vehicle[J]. Aerospace Science and Technology, 2020, 100:105778.
[7] SUN H, SUN Q, LUO S, et al. In-flight compound homing methodology of parafoil delivery systems under multiple constraints[J]. Aerospace Science and Technology, 2018, 79:85-104.
[8] ZHANG L, GAO H, CHEN Z, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1-2):1-8.
[9] FOWLER L, ROGERS J. Bezier curve path planning for parafoil terminal guidance[J]. Journal of Aerospace Information Systems, 2014, 11(5):300-315.
[10] SLEGERS N, BROWN A, ROGERS J. Experimental investigation of stochastic parafoil guidance using a graphics processing unit[J]. Control Engineering Practice, 2015, 36:27-38.
[11] ROGERS J, SLEGERS N. Robust parafoil terminal guidance using massively parallel processing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1336-1345.
[12] CHIEL B, DEVER C. Autonomous parafoil guidance in high winds[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(5):963-969.
[13] 胡文治, 陈建平, 张红英, 等.翼伞系统分段归航轨迹的优化设计[J].航空计算技术,2017,47(6):55-59. HU W Z, CHEN J P, ZHANG H Y, et al. Design and optimization in multiphase homing trajectory of parafoil system[J]. Aeronautical Computing Technique, 2017, 47(6):55-59(in Chinese).
[14] CHEN Q, SUN Y, ZHAO M, et al. A virtual structure formation guidance strategy for multi-parafoil systems[J]. IEEE Access, 2019, 7:123592-123603.
[15] 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10):3121-3130. CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3121-3130(in Chinese).
[16] LI C, TENG H, ZHU Y, et al. Design and simulation for large parafoil fix line object homing algorithm[J]. Journal of Central South University, 2016, 23(9):2276-2283.
[17] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1003-1011. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015, 32(8):1003-1011(in Chinese).
[18] NIE S, CAO Y, WU Z. Numerical simulation of parafoil inflation via a Robin-Neumann transmission-based approach[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(4):797-810.
[19] YU L, HAN C, ZHAN Y, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2):272-279.
[20] DEVALLA V, JAISWAL R, MONDAL A, et al. Estimation of lateral directional aerodynamic derivatives from flight data of unmanned powered parafoil aerial vehicle[C]//In 2018 Atmospheric Flight Mechanics Conference, 2018:3156.
[21] YANG H, SONG L, CHEN W. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5):1670-1680.
[22] LI B, HE Y, HAN J, et al. A new modeling scheme for powered parafoil unmanned aerial vehicle platforms:Theory and experiments[J]. Chinese Journal of Aeronautics, 2019, 32(11):2466-2479.
[23] ZHANG Z, ZHAO Z, FU Y. Dynamics analysis and simulation of six DOF parafoil system[J]. Cluster Computing, 2019, 22(5):12669-12680.
[24] LV F K, HE W L, ZHAO L G. An improved nonlinear multibody dynamic model for a parafoil-UAV system[J]. IEEE Access, 2019, 7:139994-140009.
[25] YANG H, SONG L, CHEN W F. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5):1670-1680.
[26] 唐小军, 尉建利, 陈凯. 求解最优控制问题的Chebyshev-Gauss伪谱法[J]. 自动化学报, 2015, 41(10):1778-1787. TANG X J, WEI J L, CHEN K. A Chebyshev-Gauss pseudo spectral method for solving optimal control problems[J]. Acta Automatica Sinica, 2015, 41(10):1778-1787(in Chinese).
[27] CHU X, ZHANG J, LU S, et al. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method[J]. Acta Astronautica, 2016, 128:363-376.
[28] YANG S, TAO C, HAO X, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67:88-95.
[29] 刘平, 胡云卿, 廖俊, 等. 基于两阶段自适应Gauss配点重构伪谱法的电力机车优化操纵[J]. 自动化学报, 2019, 45(12):2344-2354. LIU P, HU Y Q, LIAO J, et al. Optimization operation of electric locomotive based on two-stage adaptive Gauss re-collocation pseudospectral approach[J]. Acta Automatica Sinica, 2019, 45(12):2344-2354(in Chinese).
[30] 蔺君,何英姿,黄盘兴.基于改进分段Gauss伪谱法的带推力高超声速飞行器再入轨迹规划[J].控制理论与应用,2019,36(10):1662-1671. LIN J, HE Y Z, HUANG P X. Powered hypersonic vehicle reentry trajectory optimization based on improved multi-phase Gauss spectral method[J]. Control Theory and Applications, 2019, 36(10):1662-1671(in Chinese).
文章导航

/