基于能量优化的无人机机动轨迹生成方法

  • 杨森 ,
  • 张翔伦
展开
  • 中国航空工业集团公司西安飞行自动控制研究所重点实验室, 西安 710000

收稿日期: 2020-05-26

  修回日期: 2020-06-03

  网络出版日期: 2020-07-06

基金资助

国防科技重点实验室基金(614221901021701)

Energy optimized maneuver trajectory generation for unmanned aerial vehicles

  • YANG Sen ,
  • ZHANG Xianglun
Expand
  • Key Laboratory, AVIC Xi'an Flight Automatic Control Research Institute, Xi'an 710000

Received date: 2020-05-26

  Revised date: 2020-06-03

  Online published: 2020-07-06

Supported by

Science and Technology Foundation of State Key Laboratory (614221901021701)

摘要

基于能量优化的无人机机动能够使无人机在不失去决定性位置优势的情况下获取相对于对手的能量优势,足够的能量优势可转换为有效的位置优势,有利于无人机在空战中随时改出当前机动并投入下一机动动作,对于无人机获取空战胜利至关重要。开展了基于能量优化的无人机机动轨迹生成方法研究,通过在无人机机动飞行包线内设计合适的机动指令,使得无人机能量性能指标最优。以上升转弯机动为例进行了机动轨迹生成的详细设计,并与常规上升转弯机动轨迹生成结果进行对比,仿真结果显示所设计的机动动作完成时间缩短了28.6%~83.8%,总能量变化减少了64.7%~70.1%,实现了无人机机动飞行的能量优化。

本文引用格式

杨森 , 张翔伦 . 基于能量优化的无人机机动轨迹生成方法[J]. 航空学报, 2020 , 41(S2) : 724288 -724288 . DOI: 10.7527/S1000-6893.2020.24288

Abstract

Energy of motion for maneuver flight of unmanned aerial vehicles (UAVs) based on energy optimization enables the UAVs to gain energy superiority without losing decisive position superiority. Adequate energy superiority can be translated into effective position superiority, facilitating the UAVs in changing into other maneuver from current maneuver at any moment, which is crucial for UAVs to win the aerial combat. This paper examines the maneuver trajectory generation methods for UAVs based on energy optimization, designs appropriate maneuver commands in the UAV flight envelope to achieve optimal energy performance, and uses detailed pull-up turn maneuver trajectory commands as an example. In addition, a comparison is made with the classical maneuver trajectory method. Results show that with the designed method, the time consumption of maneuver flight is shortened by 28.6% to 83.8%, and the energy undulate quantity of the UAV is reduced by 64.7% to 70.1%, thereby realizing energy optimization for UAV maneuver flight.

参考文献

[1] 张翔伦, 杨蔷薇. 基于机动动作库的实时轨迹生成与仿真研究[J]. 飞行力学, 2008, 26(3):29-32. ZHANG X L, YANG Q W. Research on real time trajectory generation based on tactical maneuvers data base[J]. Flight Dynamics, 2008, 26(3):29-32(in Chinese).
[2] 刘佩, 王维嘉, 陈向, 等. 空战机动飞行轨迹生成与控制[J]. 兵工自动化, 2018, 37(11):76-80. LIU P, WANG W J, CHEN X, et al. Air combat maneuvering flight trajectory generation and control[J]. Qrdnance Industry Automation, 2018, 37(11):76-80(in Chinese).
[3] 丁达理, 王杰, 董康生, 等. 基于RBF网络的UCAV战术机动轨迹快速生成方法[J]. 系统工程与电子技术, 2019, 41(1):96-104. DING D L, WANG J, DONG K S, et al. Rapid generation method of UCAV tactical maneuver trajectory based on RBF network[J]. Systems Engineering and Electronics, 2019, 41(1):96-104(in Chinese).
[4] 王杰, 丁达理, 董康生, 等. UCAV自主空战战术机动动作建模与轨迹生成[J]. 火力与指挥控制, 2018, 43(12):45-49. WANG J, DING D L, DONG K S, et al. UCAV autonomous air combat tactical maneuvering modeling and trajectory generation[J]. Fire Control & Command Control, 2018, 43(12):45-49.
[5] 陈永亮. 基于非线性规划方法的过失速机动轨迹优化[J]. 南京航空航天大学学报, 2013, 45(6):746-751. CHEN Y L. Optimal design of post stall maneuverable trajectory based on nonlinear programming method[J]. Journal of Nanjing University of Aeronautics & Astronautic, 2013, 45(6):746-751(in Chinese).
[6] WANG X P, LIN Q Y, DONG X M. Aircraft evasive maneuver trajectory optimization based on QPSO[C]//2010 Intenational Congress Congress on Ultra Modern Telecommunications and Control Systems and Workshops. Piscataway:IEEE Press, 2010:416-420.
[7] HURST A, WICKENHEISER A, GARCIA E. Localization and perching maneuver tracking for a morphing UAV[C]//2008 IEEE/ION Position, Location and Navigation Symposium. Piscataway:IEEE Press, 2008:1238-1245.
[8] RAO D V, TANG H, GO T H. A parametric study of fixed-wing aircraft perching maneuvers[J]. Aerospace Science and Technology, 2015, 42:459-469.
[9] ZHU J W, LIU L H, TANG G J, et al. Optimal diving maneuver strategy considering guidance accuracy for hypersonic vehicle[J]. Acta Astronautica, 2014, 4(1):231-242.
[10] KONSTANTINOV M S, ORLOV A A. Optimization of the transfer trajectory of a low thrust spacecraft for research of jupiter using an earth gravity-assist maneuver[J]. Solar System Research. 2014,48(7):606-612.
[11] RAHIMI A, KUMAR K D, ALIGHANBARI H. Particle swarm optimization applied to spacecraft reentry trajectory[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(1):307-310.
[12] CHOE R, KHARISOV E, HOVAKIMYAN N, et al. Perching maneuver for an MAV augmented with an L1 adaptive controller[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:6455.
[13] HE R Z, LIU L H, TANG G J, et al. Maneuver trajectory design for hypersonic glide vehicles in dive phase[C]//29th Chinese Control and Decision Conference(CCDC). 2017:802-807.
[14] ALIKHAN M, PEYADA N K, GO T H. Flight dynamics and optimization of three-dimensional perching maneuver[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1791-1797.
[15] MENG S, XIANG J, LUO Z, et al A novel trajectory planning strategy for aircraft emergency landing using gauss pseudo spectral method[J]. Control Theory and Technology, 2014, 12(4):393-401.
[16] 李达.飞行器栖落机动飞行轨迹优化与控制[D]. 南京:南京航空航天大学, 2017:23-35. LI D. Trajectory optimization and control of perching maneuvers for aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:23-35(in Chinese).
[17] 罗伯特·肖. 战斗机空战战术与机动(下)[M]. 北京:中国市场出版社, 2016:10-110. ROBERT L S. Flight combat:Tactics and maneuvering[M]. Beijing:Chinese Market Press, 2016:10-110(in Chinese).
[18] 罗伯特·肖. 战斗机空战战术与机动(上)[M]. 北京:中国市场出版社, 2016:34-86. ROBERT L S. Flight combat:Tactics and maneuvering[M]. Beijing:Chinese Market Press, 2016:34-86(in Chinese).
[19] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2005:6-44. WU S T, FEI Y H. Flight control system[M]. Beijing:Beihang University Press, 2005:6-44(in Chinese).
[20] 常振亚. 飞机飞行性能计算手册[M]. 西安:飞行力学杂志社, 1987:21-64. CHANG Z Y. Aircraft performance calculation manual[M]. Xi'an:Flight Dynamic Magazine, 1987:21-64(in Chinese).
文章导航

/