综述

激光增材制造过程数值仿真技术综述

  • 郭鑫鑫 ,
  • 陈哲涵
展开
  • 北京科技大学 机械工程学院, 北京 100083

收稿日期: 2020-05-14

  修回日期: 2020-06-11

  网络出版日期: 2020-07-06

基金资助

国家自然科学基金(61803023)

Numerical simulation of laser additive manufacturing process: A review

  • GUO Xinxin ,
  • CHEN Zhehan
Expand
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2020-05-14

  Revised date: 2020-06-11

  Online published: 2020-07-06

Supported by

National Natural Science Foundation of China (61803023)

摘要

数值仿真是研究激光增材制造过程中各类物理现象、揭示零件缺陷形成机理、优化增材制造工艺参数的重要手段,该领域学者针对增材制造过程中的热分析、金属粉末颗粒性质分析、微观结构分析、质量缺陷成因分析等方面,开展了大量研究,提出了相应的数学模型和方法。激光增材制造过程的数值仿真是一个在空间和时间上均跨越多个尺度的复杂问题,微观、介观、宏观尺度下数值仿真所关注的对象和所使用的方法各不相同;多数研究聚焦于某一尺度下的过程仿真,另一部分研究则基于不同模型的数据关系建立模型间的耦合关系,实现热-相、热-力的综合分析。对现阶段激光增材制造数值仿真领域的主要技术进行了综述,在梳理数值仿真基本流程的基础上,对其中涉及的热源模型,粉末模型,力学模型以及微观结构模型进行了介绍,讨论了其特点和适用性;结合相关技术领域的发展,探讨了激光增材制造数值仿真技术的发展方向,旨在为本领域的技术研究与发展提供参考。

本文引用格式

郭鑫鑫 , 陈哲涵 . 激光增材制造过程数值仿真技术综述[J]. 航空学报, 2021 , 42(10) : 524227 -524227 . DOI: 10.7527/S1000-6893.2020.24227

Abstract

Numerical simulation is an important means to study various physical phenomena in the process of laser additive manufacturing, reveal the formation mechanism of part defects, and optimize the process parameters. Extensive research has been conducted in the analysis of thermal processes, metal powder particle properties, microstructure, quality defect causes, and many other aspects, and corresponding mathematical models and methods have been proposed. The numerical simulation of laser additive manufacturing process is a complex problem spanning multiple scales in both space and time. The objects and methods used in numerical simulation in micro, meso and macro scales are different. Most existing research focuses on process simulation at a certain scale, and other research usually establishes the coupling relationship among models based on their data relationship to achieve a comprehensive thermal-phase or thermal-mechanical analysis. This paper reviews current main technologies in the field of numerical simulation of laser additive manufacturing. Based on the basic process of numerical simulation, the involved heat source model, powder model, mechanical model and microstructure model are introduced, and their characteristics and applicability discussed. Considering the development of related technical fields, the direction of research on numerical simulation technology of laser additive manufacturing is discussed, hoping to provide reference for the technical development in this field.

参考文献

[1] PIQUÉ A, AUYEUNG RAYMOND C Y, KIM H, et al. Laser 3D micro-manufacturing[J]. Journal of Physics D-Applied Physics, 2016, 49(22):223001.
[2] 朱忠良,赵凯,郭立杰,等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机,2020,50(1):1-14. ZHU Z L, ZHAO K, GUO L J, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 2020, 50(1):1-14(in Chinese).
[3] 任慧娇, 周冠男, 从保强, 等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术, 2020, 63(10):72-77. REN H J, ZHOU G N, CONG B Q, et al. Development and application of metal additive manufacturing in aerospace field[J]. Aeronautical Manufacturing Technology, 2020, 63(10):72-77(in Chinese).
[4] 安国进. 金属增材制造技术在航空航天领域的应用与展望[J]. 现代机械, 2019(3):39-43. AN G J. Application and prospect of metal additive manufacturing technology in aerospace[J]. Modern Machinery, 2019(3):39-43(in Chinese).
[5] TEPYLO N, HUANG X, PATNAIK P C. Laser-based additive manufacturing technologies for aerospace applications[J]. Advanced Engineering Materials, 2019, 21(11):1900617.
[6] 赵德陈, 林峰. 金属粉末床熔融工艺在线监测技术综述[J]. 中国机械工程, 2018, 29(17):2100-2110. ZHAO D C,LIN F. Review of on-line monitoring techniques in metal powder bed fusion processes[J]. China Mechanical Engineering, 2018, 29(17):2100-2110(in Chinese).
[7] LIAN Y, GAN Z, YU C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing[J]. Materials & Design, 2019, 169:107672.
[8] RODGERS T M, MADISON J D, TIKARE V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo[J]. Computational Materials Science, 2017, 135:78-89.
[9] 赵剑峰,马智勇,谢德巧,等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5):675-683. ZHAO J F,MA Z Y,XIE D Q,et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014,46(5):675-683(in Chinese).
[10] 万志远, 陈银平. 金属增材制造技术的研究概况[J]. 模具技术, 2020(1):59-63. WAN Z Y, CHEN Y P. A surrey on the metal additive manufacturing technology[J]. Die and Mould Technology, 2020(1):59-63(in Chinese).
[11] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228):1349-1352.
[12] ALI H, GHADBEIGI H, HOSSEINZADEH F, et al. Effect of pre-emptive in situ parameter modification on residual stress distributions within selective laser-melted Ti6Al4V components[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(9-12):4467-4479.
[13] BIEGLER M, MARKO A, GRAF B, et al. Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry[J]. Additive Manufacturing, 2018, 24:264-272.
[14] CHEN Z H, GUO X X, SHI J. Hardness prediction and verification based on key temperature features during the directed energy deposition process[J/OL]. International Journal of Precision Engineering and Manufacturing-Green Technology,(2020-03-19)[2020-06-24].https://doi.org/10.1007/s40684-020-00208-4.
[15] KING W E, ANDERSON A T, FERENCZ R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges[J]. Applied Physics Reviews, 2015, 2(4):041304.
[16] 李礼, 刘晓辉, 戴煜, 等. 粉末床增材制造的有限元仿真在航空零部件上的应用技术研究[J]. 新材料产业, 2018(6):55-58. LI L, LIU X H, DAI Y, et al. Research on application technology of finite element simulation of powder bed additive manufacturing in aviation parts[J]. Advanced Materials Industry, 2018(6):55-58(in Chinese).
[17] TSENG C C, LI C J. Numerical investigation of interfacial dynamics for the melt pool of Ti-6Al-4V powders under a selective laser[J]. International Journal of Heat & Mass Transfer, 2019, 134:906-919.
[18] FRANCOISA M M, SUN A, KING W E, et al. Modeling of additive manufacturing processes for metals:Challenges and opportunities[J]. Current Opinion in Solid State & Materials Science, 2017, 21:198-206.
[19] ZHU G, ZHANG A, LI D, et al. Numerical simulation of thermal behavior during laser direct metal deposition[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55:945-954.
[20] REN K, CHEW Y, FUH J Y H, et al. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes[J]. Materials & Design, 2019, 162:80-93.
[21] 谭树杰, 李多生, 叶寅, 等. 激光熔化沉积Inconel718合金温度场及形貌的数值模拟[J]. 中国有色金属学报, 2018, 28(11):2296-2304. TAN S J, LI D S, YE Y, et al. Temperature field and morphology simulation of laser melting deposited Inconel718 alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(11):2296-2304(in Chinese).
[22] HUANG W B, ZHANG Y M. Finite element simulation of thermal behavior in single-track multiple-layers thin wall without-support during selective laser melting[J]. Journal of Manufacturing Processes, 2019, 42:139-148.
[23] GU D D, HE B B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy[J]. Computational Materials Science, 2016, 117:221-232.
[24] LIU P W, WANG Z, XIAO Y H, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials[J]. International Journal of Plasticity, 2020, 128:102670.
[25] ZHAN X H, LIN X, GAO Z N, et al. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of Invar alloy[J]. Journal of Alloys & Compounds, 2018, 755:123-134.
[26] TAN P F, SHEN F, LI B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V[J]. Materials & Design, 2019, 168:107642.
[27] KÖRNER C, BAUEREIβ A, ATTAR E. Fundamental consolidation mechanisms during selective beam melting of powders[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(8):085011.
[28] XIAO W J, LI S M, WANG C S, et al. Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys[J]. Materials & Design, 2019, 164:107553.
[29] 冯一琦, 谢国印, 张璧, 等. 激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报, 2019, 40(12):423089. FENG Y Q, XIE G Y, ZHANG B, et al. Influence of laser power and surface condition on balling behavior in selective laser melting[J]. Acta Aeronautica et Astro nautica Sinica, 2019, 40(12):423089(in Chinese).
[30] GAN Z T, LIU H, LI S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat & Mass Transfer, 2017, 111:709-722.
[31] XIA M J, GU D D, YU G Q, et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116:96-106.
[32] YUAN P P, GU D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites:simulation and experiments[J]. Journal of Physics D-Applied Physics, 2015, 48(3):035303.
[33] DAI D H, GU D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools & Manufacture, 2015, 88:95-107.
[34] WANG S H, ZHU L D, FUH JERRY Y H, et al. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition[J]. Optics and Lasers in Engineering, 2020, 127:105950.
[35] LE K Q, TANG C, WONG C H. On the study of keyhole-mode melting in selective laser melting process[J]. International Journal of Thermal Sciences, 2019, 145:105992.
[36] CHEN Z H, ZONG X H, SHI J, et al. Online monitoring based on temperature field features and prediction model for selective laser sintering process[J]. Applied Sciences, 2018, 8(12):2383-2398.
[37] ZHANG Z D, HUANG Y Z, KASINATHAN A R, et al. 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity[J]. Optics & Laser Technology, 2019, 109:297-312.
[38] KUMAR M A, AKASH A, ARVIND K, et al. Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach[J]. International Journal of Advanced Manufacturing Technology, 2018, 99:2257-2270.
[39] LI J F, LI L, STOTT F H. Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials[J]. International Journal of Heat and Mass Transfer, 2004, 47(6-7):1159-1174.
[40] LIU S W, ZHU H H, PENG G Y. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142:319-328.
[41] LIU B Q, FANG G, LEI L P, et al. A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM)[J].Applied Mathematical Modelling, 2020, 79:506-520.
[42] YANG Y, GU D D, DAI D H, et al. Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy[J]. Materials & Design, 2018, 143:12-19.
[43] ZHANG Y,ZHANG J. Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata[J]. Additive Manufacturing, 2019, 28:750-765.
[44] TRAPP J, RUBENCHIK A M, GUSS G, et al. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing[J]. Applied Materials Today, 2017, 9:341-349.
[45] MOGES T, AMETA G, WITHERELL P. A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations[J]. Journal of Manufacturing Science and Engineering, 2019, 141(4):040801.
[46] CHEN H, WEI Q S, WEN S F, et al. Flow behavior of powder particles in layering process of selective laser melting:Numerical modeling and experimental verification based on discrete element method[J]. International Journal of Machine Tools and Manufacture, 2017, 123:146-159.
[47] KOVALEV O B, ZAITSEV A V, NOVICHENKO D, et al. Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process[J]. Journal of Thermal Spray Technology, 2011, 20(3):465-478.
[48] PINKERTON, ANDREW J. Advances in the modeling of laser direct metal deposition[J]. Journal of Laser Applications, 2015, 27(S1):S15001.
[49] RAI A, MARKL M, KRNER C. A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing[J]. Computational Materials Science, 2016, 124:37-48.
[50] GU H, WEI C, LI L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. International Journal of Heat and Mass Transfer, 2020, 151:119458.
[51] LEE W H, ZHANG Y, ZHANG J. Discrete element modeling of powder flow and laser heating in direct metal laser sintering process[J]. Powder Technology, 2017, 315:300-308.
[52] FOUDA Y M, BAYLY A E. A DEM study of powder spreading in additive layer manufacturing[J]. Granular Matter, 2020, 22:10.
[53] MEAKIN P, JULLIEN R. Restructuring effects in the rain model for random deposition[J]. Journal de Physique, 1987, 48(10):1651-1662.
[54] MARKL M, KOERNER C. Multiscale modeling of powder bed-based additive manufacturing[J]. Annual Review of Materials Research, 2016, 46:93-123.
[55] SAXENA S, SHARMA R, KUMAR A. A microscale study of thermal field and stresses during processing of ti6al4v powder layer by selective laser melting[J]. Lasers in Manufacturing and Materials Processing, 2018, 5(4):335-365.
[56] 杜洋, 乔凤斌, 郭立杰, 等. AlSi10Mg粉末激光选区熔化残余应力场数值模拟[J]. 电焊机, 2019, 49(1):103-119. DU Y, QIAO F B, GUO L J, et al. Numerical simulation of selective laser melting residual stress field of AlSi10Mg powder, electric welding machine[J]. Electric Welding Machine, 2019, 49(1):113-119(in Chinese).
[57] LI Y L, ZHOU K, TAN P F, et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 136:24-35.
[58] MUGWAGWA L, DIMITROV D, MATOPE S, et al. Evaluation of the impact of scanning strategies on residual stresses in selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):2441-2450.
[59] ZOU S, XIAO H B, YE F P, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting[J]. Results in Physics, 2020, 16:103005
[60] LU X F, LIN X, MICHELE C, et al. In situ measurements and thermo-mechanical simulation of Ti-6Al-4V laser solid forming processes[J]. International Journal of Mechanical Sciences, 2019, 153-154:119-130.
[61] MARQUES B M, ANDRADE C M, NETO D M, et al. Numerical analysis of residual stresses in parts produced by selective laser melting process[J]. Procedia Manufacturing, 2020, 47:1170.
[62] PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15.
[63] 文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3):394-402. WEN S, DONG A P, LU Y L, et al. Finite element simulation of the temperature field and residual stress in gh536 superalloy treated by selective laser melting[J]. Acta Metallurgica Sinica, 2018, 54(3):394-402(in Chinese).
[64] LINDGREN L E, LUNDBAECK A, FISK M. Thermo-mechanics and microstructure evolution in manufacturing simulations[J]. Journal of Thermal Stresses, 2013, 36(4-6):564-588.
[65] FANG Z C, WUZ L, HUANG C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts[J]. Optics & Laser Technology, 2020, 129:106283.
[66] MIRKOOHI E, SIEVERS D E, GARMESTANI H, et al. Thermo-mechanical modeling of thermal stress in metal additive manufacturing considering elastoplastic hardening[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 28:52-67.
[67] ZINOVIEVA O, ZINOVIEV A, PLOSHIKHIN V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing[J]. Computational Materials Science, 2018, 141:207-220.
[68] ZHANG Z, TAN Z J, YAO X X, et al. Numerical methods for microstructural evolutions in laser additive manufacturing[J]. Computers & Mathematics with Applications, 2019, 78(7):2296-2307.
[69] WEI H L, KNAPP G L, MUKHERJEE T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718[J]. Additive Manufacturing, 2019, 25:448-459.
[70] KUAN T J H, LEONG S S, YEE Y W. Microstructure modelling for metallic additive manufacturing:a review[J]. Virtual and Physical Prototyping, 2020, 15(1):87-105.
[71] ZHANG J W,LIOU F,SEUFZER W,et al. A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD)[J]. Additive Manufacturing, 2016, 11:32-39.
[72] ZINOVIEV A, ZINOVIEVA O, PLOSHIKHIN V, et al. Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method[J]. Materials & Design, 2016, 106:321-329
[73] ZHANG Y, XIAO X H, ZHANG J. Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography[J]. Results in Physics, 2019, 13:102336.
[74] ZHANG J, WU L M, ZHANG Y, et al. Phase field simulation of dendritic microstructure in additively manufactured titanium alloy[J]. Metal Powder Report, 2019, 74(1):20-24.
[75] KHAIRALLAH S A, ANDERSON A. Mesoscopic simulation model of selective laser melting of stainless steel powder[J]. Journal of Materials Processing Technology, 2014, 214(11):2627-2636.
[76] YAN W T, GE W J, QIAN Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134:324-333.
[77] QI X B, CHEN G F, LI Y, et al. Applying neural-network-based machine learning to additive manufacturing:current applications, challenges, and future perspectives[J]. Engineering, 2019, 5(4):721-729.
[78] QIAN Y, YAN W T, LIN F. Data mining for mesoscopic simulation of electron beam selective melting[J]. Engineering, 2019, 5(4):746-812.
[79] GAN Z T, LI H Y, WOLFF S J, et al. Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map[J]. Engineering, 2019, 5(4):730-735.
[80] ROY M, WODO O. Data-driven modeling of thermal history in additive manufacturing[J]. Additive Manufacturing, 2020, 32:101017.
[81] KOEPPE A, PADILLA C A H, VOSHAGE M, et al. Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks[J]. Manufacturing Letters, 2018, 15:147-150.
文章导航

/