电子电气工程与控制

基于DNET的空中红外目标抗干扰识别算法

  • 张凯 ,
  • 王凯迪 ,
  • 杨曦 ,
  • 李少毅 ,
  • 王晓田
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 南京南瑞信息通信科技有限公司, 南京 211106

收稿日期: 2020-05-15

  修回日期: 2020-05-29

  网络出版日期: 2020-07-06

基金资助

国家自然科学基金(61703337);上海航天科技创新基金(SAST2017-082,SAST2019-081)

Anti-interference recognition algorithm based on DNET for infrared aerial target

  • ZHANG Kai ,
  • WANG Kaidi ,
  • YANG Xi ,
  • LI Shaoyi ,
  • WANG Xiaotian
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. NARI Information & Communication Technology Company, Nanjing 211106, China

Received date: 2020-05-15

  Revised date: 2020-05-29

  Online published: 2020-07-06

Supported by

National Natural Science Foundation of China (61703337); Shanghai Aerospace Science and Technology Innovation Fundation (SAST2017-082, SAST2019-081)

摘要

复杂空战背景下针对人工干扰的博弈是红外空空导弹精确探测制导技术发展面临的瓶颈和核心技术。针对人工干扰对空中红外目标产生的遮蔽、黏连、相似等干扰现象,以及目标机动和相对运动造成的形状、尺度、辐射特性剧烈变化等实际问题,提出一种基于信息特征提取的深度卷积神经网络DNET空中红外图像目标抗干扰识别算法。首先,DNET网络对大尺度特征图像采用密集连接模块,在前部通道保存每一层的网络输出,在网络末端引入特征注意力机制,获得每个特征通道的信息特征识别权重。然后,加入多尺度密集连接模块,并与多尺度特征融合检测结合,提高对大尺度变化情况下的目标特征提取能力。实验结果表明,在伴随红外诱饵干扰的实时检测条件下,红外目标由点目标变化为成像目标,直至充满视场的整个过程中,本文抗干扰识别算法的识别精确度、召回率及识别速度分别达到99.36%、96.95%、132 fps,具备识别精确度和召回率高、识别速度快等优点,并具有良好的鲁棒性。

本文引用格式

张凯 , 王凯迪 , 杨曦 , 李少毅 , 王晓田 . 基于DNET的空中红外目标抗干扰识别算法[J]. 航空学报, 2021 , 42(2) : 324223 -324223 . DOI: 10.7527/S1000-6893.2020.24223

Abstract

Infrared air-to-air missile anti-interference technology is one of the key technologies to achieve accurate guidance and strike capabilities. Aiming at the practical problems such as shadowing, adhesion, similarity and other interference phenomena caused by artificial interference on aerial infrared targets, and the drastic changes in shape, scale, and radiation characteristics caused by target maneuver and relative motion, this paper proposes an aerial infrared image target anti-interference recognition algorithm based on a feature extraction deep convolutional neural network DNET. Firstly, using dense connections on large-scale feature maps, the DNET network stores the network output of each layer in the front channel. A feature attention mechanism is introduced at the end of the network to obtain the information feature recognition weight of each feature channel. Secondly, a multi-scale dense connection module is added and combined with multi-scale feature fusion detection to improve the ability to extract target features with large-scale changes. Experimental results show that the DNET network can accurately identify the target with the interference of infrared decoy in the process of the infrared target changing from a point target to an imaging target until it fills the field of view. The accuracy, the recall rate, and the recognition speed of DNET reach 99.36%, 96.95%, and 132 fps, respectively, indicating the high recognition accuracy, high recall rate, fast recognition speed, and good robustness of the DNET network.

参考文献

[1] 王泉, 董维浩, 刘新爱, 等. 新型红外空空导弹抗干扰能力评估分析[J]. 航天电子对抗, 2019, 35(3):16-19. WANG Q, DONG W H, LIU X A, et al. Analysis of evaluation for new infrared air-to-air missile countermeasures performance[J]. Aerospace Electronic Warfare, 2019, 35(3):16-19(in Chinese).
[2] 高晶, 孙继银, 吴昆, 等. 基于形状模板匹配的前视红外目标检测方法[J]. 北京工业大学学报, 2012, 38(9):1359-1365. GAO J, SUN J Y, WU K, et al. FLIR target detection algorithm based on shape template matching[J]. Journal of Beijing University of Technology, 2012, 38(9):1359-1365(in Chinese).
[3] 赵天生. 基于模板匹配的运动小目标识别系统的设计与实现[D]. 北京:北京工业大学, 2017. ZHAO T S. The design and implementation of moving small target recognition system based on template matching[D]. Beijing:Beijing University of Technology, 2017(in Chinese).
[4] 郭文诚, 崔昊杨, 马宏伟, 等. 基于Zernike矩特征的电力设备红外图像目标识别[J]. 激光与红外, 2019, 49(4):503-506. GUO W C, CUI H Y, MA H W, et al. Infrared image target recognition of power equipment based on Zernike moment[J]. Laser & Infrared, 2019, 49(4):503-506(in Chinese).
[5] 张旭艳, 华宇宁, 董晔, 等. 一种基于不变矩的红外目标识别算法[J]. 沈阳理工大学学报, 2016, 35(2):10-13, 29. ZHANG X Y, HUA Y N, DONG Y, et al. A recognition method for infrared image based on invariant moments[J]. Journal of Shenyang Ligong University, 2016, 35(2):10-13, 29(in Chinese).
[6] 张迪飞, 张金锁, 姚克明, 等. 基于SVM分类的红外舰船目标识别[J]. 红外与激光工程, 2016, 45(1):179-184. ZHANG D F, ZHANG J S, YAO K M, et al. Infrared ship-target recognition based on SVM classification[J]. Inrared and Laser Engineering, 2016, 45(1):179-184(in Chinese).
[7] 梁栋, 高赛, 孙涵, 等. 结合核相关滤波器和深度学习的运动相机中无人机目标检测[J]. 航空学报, 2020, 41(7):323733. LIANG D, GAO S, SUN H, et al. UAV detection in a motion camera combining kernelized correlation filters and deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323733(in Chinese).
[8] 刘芳, 王洪娟, 黄光伟, 等. 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40(3):322332. LIU F, WANG H J, HUANG G W et al. UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322332(in Chinese).
[9] WANG X F, DONG X M, KONG X W, et al. Drogue detection for autonomous aerial refueling based on convolutional neural networks[J]. Chinese Journal of Aeronautics, 2017, 30(1):380-390.
[10] 朱大炜. 基于深度学习的红外图像飞机目标检测方法[D]. 西安:西安电子科技大学, 2018. ZHU D W. Infrared image plane target detection method based on deep learning[D]. Xi'an:Xidian University, 2018(in Chinese).
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot MultiBox detector[M]. Berlin:Springer International Publishing, 2016:21-37.
[12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations, 2014:265-276.
[13] 何谦. 抗红外诱饵的目标识别仿真技术研究[D]. 成都:电子科技大学, 2019. HE Q. Research on target recognition simulation technology of anti-infrared bait[D]. Chengdu:University of Electronic Science and Technology of China, 2019(in Chinese).
[14] REDMON J, FARHADI A. YOLOv3:An incremental improvement[EB/OL]. (2018-04-08)[2020-05-05]. https://arxiv.org/abs/1804.02767.
[15] 徐小婷. 基于深度学习的红外场景目标检测技术研究[D]. 太原:中北大学, 2019. XU X T. Research on infrared scene target detection technology based on deep learning[D]. Taiyuan:North University of China, 2019(in Chinese).
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016:770-778.
[17] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017:2261-2269.
[18] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2015:1440-1448.
[19] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[20] ZHU R, ZHANG S, WANG X, et al. ScratchDet:Training single-shot object detectors from scratch[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019.
[21] ZHANG X, DING Q, LUO H, et al. Infrared small target detection based on an image-patch tensor model[J]. Infrared Physics & Technology, 2019, 99:55-63.
文章导航

/