论文

冲击载荷作用下38CrMoAl渗氮钢损伤机理和耐腐蚀性能

  • 张柱柱 ,
  • 陈跃良 ,
  • 姚念奎 ,
  • 卞贵学 ,
  • 张勇 ,
  • 张杨广
展开
  • 1. 海军航空大学青岛校区, 青岛 266041;
    2. 沈阳飞机设计研究所, 沈阳 110035

收稿日期: 2020-05-13

  修回日期: 2020-06-16

  网络出版日期: 2020-07-06

基金资助

山东省高等学校"青创科技计划"资助项目(2020KJA014);中国博士后科学基金(2019M653929)

Damage mechanism and corrosion resistance of 38CrMoAl nitrided steel under impact load

  • ZHANG Zhuzhu ,
  • CHEN Yueliang ,
  • YAO Niankui ,
  • BIAN Guixue ,
  • ZHANG Yong ,
  • ZHANG Yangguang
Expand
  • 1. Naval Aviation University Qingdao Campus, Qingdao 266041, China;
    2. Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2020-05-13

  Revised date: 2020-06-16

  Online published: 2020-07-06

Supported by

"Green Innovation Science and Technology Plan" of Colleges and Universities in Shandong Province (2020KJA014); China Postdoctoral Science Foundation (2019M653929)

摘要

为研究38CrMoAl渗氮钢材料在冲击载荷与海洋环境侵蚀共同作用下的损伤机理和耐腐蚀性能,对渗氮处理前后的38CrMoAl钢材料进行了冲击加载试验和腐蚀性能测试。研究发现渗氮38CrMoAl钢材料在高应变率下具有较强的正应变率敏感性。在冲击载荷作用下,试件表面渗氮层出现裂纹,并伴随着渗氮层的部分脆性剥落,但裂纹长度均在500~700 μm,裂纹只在渗氮层中扩展,并没有继续延伸至非渗氮层的金属基体内部。渗氮处理提高了材料表面硬度和强度,但降低了韧性。电化学测试结果表明渗氮处理显著提高了材料的耐腐蚀性能,其自腐蚀电位相对于未渗氮试件由-726.24 mV正移至-174.42 mV。但冲击加载后的渗氮试件由于表面渗氮层的破损,部分金属基体露出并与未发生破坏的表面形成电势差,进而发生较为强烈的电偶腐蚀。扫描开尔文探针测试结果表明,渗氮件表面阴阳极电位差及电位分散程度相对于未渗氮件增大,渗氮件更易发生局部腐蚀。冲击加载改变了渗氮层的表面状态,阴阳极电位差增加,使材料表面腐蚀变得更加不均匀。对试件耐腐蚀性能进行了盐雾试验验证,盐雾试验结果与电化学测试分析结果相一致,在舰载机维护保养中,应关注受冲击部位渗氮层的裂纹检查,并做好相应的防腐处理。

本文引用格式

张柱柱 , 陈跃良 , 姚念奎 , 卞贵学 , 张勇 , 张杨广 . 冲击载荷作用下38CrMoAl渗氮钢损伤机理和耐腐蚀性能[J]. 航空学报, 2021 , 42(5) : 524215 -524215 . DOI: 10.7527/S1000-6893.2020.24215

Abstract

To study the damage mechanism and corrosion resistance of 38CrMoAl steel materials under the combined effect of impact load and marine environment erosion, we subjected 38CrMoAl steel materials before and after nitriding to impact loading tests and corrosion performance tests. The studies found that the nitrided 38CrMoAl steel material has strong positive strain rate sensitivity at high strain rates. Under the impact load, cracks appeared on the nitriding layer on the surface of the test piece, accompanied by partial brittle peeling of the nitriding layer, with all crack lengths of 500-700 μm. The cracks only propagated in the nitriding layer without extending to the inside of the metal matrix. Electrochemical test results show that the nitriding treatment significantly improves the corrosion resistance of the material, with its self-corrosion potential shifting from -726.24 mV to -174.42 mV, compared with the non-nitrided specimen. However, due to the damage on the surface nitriding layer after the impact loading, part of the metal matrix is exposed, forming a potential difference with the undamaged surface, which in turn causes strong galvanic corrosion. The scanning Kelvin probe test showed that the anode-cathode potential difference and potential dispersion degree on the surface of nitriding parts are increased compared with the non-nitriding parts, and the nitriding parts are more prone to local corrosion. Impact loading changes the surface state of the nitrided layer, making the surface corrosion of the material more uneven. Finally, the salt spray test was carried out on the test piece, and the results were consistent with those of the electrochemical test. In the maintenance of the carrier-based aircraft, attention should be paid to the crack inspection of the nitrided layer of the impacted part, and corresponding anti-corrosion treatments should be done.

参考文献

[1] 毛勇建, 王珏, 陈颖, 等. 弹射起飞和拦阻着陆冲击试验方法探讨[J]. 装备环境工程, 2020, 17(4):45-50. MAO Y J, WANG J, CHEN Y, et al. Catapult launch and arrested landing shock test methods[J]. Equipment Environmental Engineering, 2020, 17(4):45-50(in Chinese).
[2] 陶春虎, 刘昌奎. 舰载机的腐蚀失效及其预防[J]. 中国材料进展, 2014, 33(增刊1):623-629. TAO C H, LIU C K. Corrosion failure and prevention of carrier-based aircraft[J]. Materials China, 2014, 33(Sup1):623-629(in Chinese).
[3] 陈跃良, 黄海亮, 卞贵学, 等. 多电极偶接对金属大气腐蚀影响的试验与仿真[J]. 航空学报, 2018, 39(6):421751. CHEN Y L, HUANG H L, BIAN G X, et al. Test and simulation of effects of multi-electrode coupling on atmospheric corrosion of metals[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):421751(in Chinese).
[4] 谭晓明, 张丹峰, 战贵盼, 等. 海洋环境与疲劳载荷联合作用下喷丸超高强度钢损伤机制[J]. 航空学报, 2020, 41(8):223631. TAN X M, ZHANG D F, ZHAN G P, et al. Damage mechanism of shot peened ultra-high strength steel under combined action of marine environment and fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223631(in Chinese).
[5] 孙建波, 柳伟, 路民旭. 塑性变形条件下16MnR钢的CO2腐蚀电化学行为[J]. 材料工程, 2009, 37(1):59-63. SUN J B, LIU W, LU M X. Electrochemical corrosion behavior of 16MnR steel with plastic strain in CO2 environment[J]. Journal of Materials Engineering, 2009, 37(1):59-63(in Chinese).
[6] 莫纪平, 程晓农, 邓平安, 等. 多向压缩对7085铝合金挤压材组织和力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(8):2003-2006. MO J P, CHENG X N, DENG P A, et al. Effect of multi-axial compression on microstructure and mechanical properties of 7085 aluminum alloy extrusions[J]. Rare Metal Materials and Engineering, 2015, 44(8):2003-2006(in Chinese).
[7] 张月. 304不锈钢在海水中的腐蚀磨损性能研究[D]. 北京:中国科学院大学, 2016. ZHANG Y. A study on tribocorrosion behavior and surface protection of 304 stainless steel in seawater[D]. Beijing:University of Chinese Academy of Sciences, 2016(in Chinese).
[8] 郑捷, 刘洋, 童明波. 腐蚀环境对飞机梁结构连接件疲劳寿命和裂纹扩展的影响[J]. 中国机械工程, 2019, 30(17):2129-2134. ZHENG J, LIU Y, TONG M B. Influences of corrosion environments on fatigue life and crack propagation of aircraft beam structure connectors[J]. China Mechanical Engineering, 2019, 30(17):2129-2134(in Chinese).
[9] 罗开玉, 邢月华, 柴卿锋, 等. 激光冲击强化对2Cr13不锈钢腐蚀疲劳性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3):850-858. LUO K Y, XING Y H, CHAI Q F, et al. Effects of laser shock peening on corrosion fatigue behaviour of 2Cr13 stainless steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3):850-858(in Chinese).
[10] 杨世聪, 姚国文, 张劲泉, 等. 加速盐雾环境中钢绞线的腐蚀疲劳特征[J]. 材料导报, 2018, 32(12):1988-1993. YANG S C, YAO G W, ZHANG J Q, et al. The corrosion fatigue characteristic of steel strand experiencing an artificial accelerated salt fog ageing[J]. Materials Review, 2018, 32(12):1988-1993(in Chinese).
[11] SHENG J, XIA J W, MA R W. Experimental study on the coupling effect of sulfate corrosion and loading on the mechanical behavior of steel and H-section beam[J]. Construction and Building Materials, 2018, 189:711-718.
[12] SCATIGNO G G, DONG P, RYAN M P, et al. The effect of salt loading on chloride-induced stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions[J]. Materialia, 2019, 8:100509.
[13] LI L, LI C Q, MAHMOODIAN M. Prediction of fatigue failure of steel beams subjected to simultaneous corrosion and cyclic loading[J]. Structures, 2019, 19:386-393.
[14] WRIGHT E E, KAUFMAN M J, WEBER G R. The influence of microstrain evolution by tensile straining on localized corrosion of Al-Li alloys 2099 and 2196[J]. Metallurgical and Materials Transactions A, 2020, 51(2):1012-1021.
[15] CHENG W, LIU Y, ZHANG Y, et al. Tensile properties and corrosion behavior of a dilute Mg-0.5Sn-0.7Al-0.8Zn alloy applied for biomaterials[J/OL]. Metals and Materials International, 2020.https://www.researchgate.net/publication/340562224_Tensile_Properties_and_Corrosion_Behavior_of_a_Dilute_Mg-05Sn-07Al-08Zn_Alloy_Applied_for_Biomaterials.doi:10.1007/s12540-020-00703-y.
[16] 张有宏, 吕国志, 李仲, 等. 铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J]. 航空学报, 2007, 28(2):332-335. ZHANG Y H, LU G Z, LI Z, et al. Investigation on corrosion fatigue crack growth and residual strength of aluminum alloy structure[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):332-335(in Chinese).
[17] 陈跃良, 吴省均, 卞贵学, 等. 基于Gerber模型的DFR腐蚀折算系数及其试验测定[J]. 材料导报, 2019, 33(16):2793-2798. CHEN Y L, WU X J, BIAN G X, et al. Theoretical and experimental determination of DFR-corrosion-influence-factors based on gerber model[J]. Materials Reports, 2019, 33(16):2793-2798(in Chinese).
[18] 陈跃良, 卞贵学, 衣林, 等. 腐蚀和疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究[J]. 机械工程学报, 2012, 48(20):73-79. CHEN Y L, BIAN G X, YI L, et al. Research on fatigue characteristic and fracture mechanics of aluminum alloy under alternate action of corrosion and fatigue[J]. Journal of Mechanical Engineering, 2012, 48(20):73-79(in Chinese).
[19] 陈跃良, 卞贵学, 郁大照. 预腐蚀铝合金典型螺栓单搭接件疲劳寿命研究[J]. 工程力学, 2012, 29(5):251-256. CHEN Y L, BIAN G X, YU D Z. Study on fatigue life of pre-corroded aluminum alloy typical single bolted lap joints[J]. Engineering Mechanics, 2012, 29(5):251-256(in Chinese).
[20] 陈跃良, 王安东, 卞贵学, 等. 海洋环境下G827/3234复合材料老化机制及当量加速关系[J]. 复合材料学报, 2018, 35(12):3304-3312. CHEN Y L, WANG A D, BIAN G X, et al. Aging mechanism and equivalent acceleration relationship of G827/3234 composite in the marine environment[J]. Acta Materiae Compositae Sinica, 2018, 35(12):3304-3312(in Chinese).
[21] 高溥, 何东青, 郑韶先, 等. 碳基和氮化物基涂层的摩擦-腐蚀交互行为的原位研究[J]. 摩擦学学报, 2015, 35(2):138-146. GAO P, HE D Q, ZHENG S X, et al. In-situ study of tribocorrosion behavior of carbon-based and nitride-based coatings[J]. Tribology, 2015, 35(2):138-146(in Chinese).
[22] RUIZ J B, APERADOR W, GÓMEZ J C. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method[J]. Journal of Physics Conference Series, 2016, 687(1):012031.
[23] 陈尧, 宋磊, 张宸恺, 等. 38CrMoAl液压柱塞无白亮层低温离子渗氮工艺研究[J]. 机械工程学报, 2017, 53(22):81-86. CHEN Y, SONG L, ZHANG C K, et al. Lower temperature plasma nitriding without white layer for 38CrMoAl hydraulic plunger[J]. Journal of Mechanical Engineering, 2017, 53(22):81-86(in Chinese).
[24] 牛亮, 仇圣桃, 赵俊学, 等. 连铸工艺参数对38CrMoAl大圆坯碳偏析的影响[J]. 钢铁研究学报, 2018, 30(5):359-367. NIU L, QIU S T, ZHAO J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet[J]. Journal of Iron and Steel Research, 2018, 30(5):359-367(in Chinese).
[25] 林生岭, 谢春生, 王俊德, 等. Al及LY12Al的表面处理与复合转化膜的耐蚀性能研究[J]. 腐蚀与防护, 2003, 24(4):142-145. LIN S L, XIE C S, WANG J D, et al. Surface treatment and corrosion resistance of complex conversion coating for Al and LY12Al alloy[J]. Corrosion & Protection, 2003, 24(4):142-145(in Chinese).
[26] 董超芳, 安英辉, 李晓刚, 等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性[J]. 中国有色金属学报, 2009, 19(2):346-352. DONG C F, AN Y H, LI X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(2):346-352(in Chinese).
[27] DONG C F, XIAO K, XU L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques[J]. Rare Metal Materials and Engineering, 2011, 40(Sup2):275-279.
文章导航

/