流体力学与飞行力学

受限空间内三级旋流流场和燃烧性能研究

  • 王志凯 ,
  • 江立军 ,
  • 陈盛 ,
  • 刘逸博
展开
  • 中国航发湖南动力机械研究所, 株洲 412002

收稿日期: 2020-05-11

  修回日期: 2020-06-15

  网络出版日期: 2020-07-06

基金资助

国家自然科学基金(51906234)

Study on flow fields and combustion characteristics of triple swirler in confined zone

  • WANG Zhikai ,
  • JIANG Lijun ,
  • CHEN Sheng ,
  • LIU Yibo
Expand
  • AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China

Received date: 2020-05-11

  Revised date: 2020-06-15

  Online published: 2020-07-06

Supported by

National Natural Science Foundation of China (51906234)

摘要

为研究受限空间内三级旋流器流场特征和对应的燃烧性能,对不同方案三级旋流器开展了试验和仿真研究,分析了2种典型流场(贴壁流场和锥形流场)特性及其对火焰形态、燃烧室性能指标的影响。结果表明,通过控制三级孔特征可实现三级旋流器下游贴壁流场和锥形流场之间的转变。三级孔为30°时,旋流器的高湍动能有利于强化燃油雾化,同时形成贴壁的大尺寸回流区有利于燃油在主燃区的空间扩散和均匀分布,能够改善燃烧室点熄火性能,但会导致主燃区火焰筒壁温较高。

本文引用格式

王志凯 , 江立军 , 陈盛 , 刘逸博 . 受限空间内三级旋流流场和燃烧性能研究[J]. 航空学报, 2021 , 42(3) : 124210 -124210 . DOI: 10.7527/S1000-6893.2020.24210

Abstract

To investigate the flow fields and combustion characteristics of triple swirlers in confined zones, experimental and numerical investigations are conducted into triple swirlers with different structures of tertiary holes. Meanwhile, the characteristics of two typical swirling flow fields (namely, dome-attached and conical structure swirling flow) and their effects on flame shapes and combustion performance are analyzed. The results indicate that changing the structures of tertiary holes can result in significant changes in the flow field from dome-attached to conical structure swirling flow. When the tertiary hole is 30°, the higher turbulence kinetic energy of the swirler can enhance the fuel atomization quality, and the dome-attached large-sized recirculation zone is beneficial to fuel diffusion and uniform distribution in the primary zone, both of which can improve the ignition and Lean Blow-Out (LBO) characteristics of the combustor. However, it will lead to higher liner wall temperature.

参考文献

[1] MONGIA H C. Engineering aspects of complex gas turbine combustion mixers part IV:Swirl cup:AIAA-2011-5526[R]. Reston:AIAA, 2011.
[2] 彭云晖,林宇震,许全宏,等. 双旋流空气雾化喷嘴喷雾、流动和燃烧性能[J]. 航空学报,2008,29(1):1-14. PENG Y H,LIN Y Z,XU Q H,et al. Atomization,aerodynamics and combustion performance of swirl cup[J]. Acta Aeronautica et Astronautica Sinica,2008,29(1):1-14(in Chinese).
[3] 赵自强,何小民,丁国玉,等. 旋流器流量分配对三级旋流流场特性的影响[J]. 推进技术,2017,38(1):134-140. ZHAO Z Q,HE X M,DING G Y,et al. Effects of air proportions on flow characteristics of swirling flow generated by triple-swirlers[J]. Journal of Propulsion Technology,2017,38(1):134-140(in Chinese).
[4] 赵自强,何小民,丁国玉,等. 外旋流器旋流数对三级旋流流场特性的影响[J]. 航空动力学报,2017,32(2):306-313. ZHAO Z Q,HE X M,DING G Y,et al. Effects of outer swirl number on flow characteristics of triple-swirlers[J]. Journal of Aerospace Power,2017,32(2):306-313(in Chinese).
[5] 蒋波,赵自强,何小民,等. 内旋流器旋流数对三级旋流流场特性的影响[J]. 推进技术,2016,37(11):2150-2156. JIANG B,ZHAO Z Q,HE X M,et al. Effects of inner swirl number on flow characteristics of triple-swirlers[J]. Journal of Propulsion Technology,2016,37(11):2150-2156(in Chinese).
[6] 王成军,江平,辛欣,等. 基于PIV技术对三级旋流杯燃烧室流场的测量[J]. 航空动力学报,2015,30(5):1032-1039. WANG C J,JIANG P,XIN X,et al. Measurement of triple-stage swirler cup combustor flow field based on PIV technology[J]. Journal of Aerospace Power,2015,30(5):1032-1039(in Chinese).
[7] 王成军,张中飞,陈保东,等. 三级旋流杯燃烧室流场测量与数值模拟[J]. 热科学与技术,2017,16(5):357-362. WANG C J,ZHANG Z F,CHEN B D,et al. PIV measurement and numerical simulation of flow field in triple-stage swirler cup combustor[J]. Journal of Thermal Science and Technology,2017,16(5):357-362(in Chinese).
[8] 丁国玉,何小民,赵自强,等. 无掺混孔三级旋流器燃烧室燃烧性能试验[J]. 航空动力学报,2014,29(12):2868-2873. DING G Y,HE X M,ZHAO Z Q,et al. Experiment of combustion performance of a triple swirler combustor with no dilution holes[J]. Journal of Aerospace Power,2014,29(12):2868-2873(in Chinese).
[9] 丁国玉,何小民,赵自强,等. 油气比及进口参数对三级旋流器燃烧室性能的影响[J]. 航空动力学报,2015,30(1):53-58. DING G Y,HE X M,ZHAO Z Q,et al. Effect of fuel-air ratio and inlet parameters on performance of triple swirler combustor[J]. Journal of Aerospace Power,2015,30(1):53-58(in Chinese).
[10] 丁国玉,何小民,赵自强,等. 三级轴向旋流器影响燃烧室性能的试验[J]. 航空动力学报,2015,30(3):686-693. DING G Y,HE X M,ZHAO Z Q,et al. Experiment on effect of triple axial swirler on combustor performance[J]. Journal of Aerospace Power,2015,30(3):686-693(in Chinese).
[11] 刘爱虢,朱悦,陈保东,等. 三级旋流器旋流角匹配影响双环预混旋流燃烧室燃烧性能试验[J]. 推进技术,2017,38(7):1539-1547. LIU A G,ZHU Y,CHEN B D,et al. Experiment on effects of triple swirler swirl angle matching on combustion performance of twins annular premixing swirler combustor[J]. Journal of Propulsion Technology,2017,38(7):1539-1547(in Chinese).
[12] 袁怡祥,林宇震,刘高恩. 三旋流器头部燃烧室拓宽燃烧稳定工作范围的研究[J]. 航空动力学报,2004,19(1):142-147. YUAN Y X,LIN Y Z,LIU G E. Combustor dome design with three swirlers for widening the operation stability range[J]. Journal of Aerospace Power,2004,19(1):142-147(in Chinese).
[13] 丁国玉,安伯堃,何小民,等. 三级轴向旋流器燃烧室的贫油熄火性能试验[J]. 航空动力学报,2015,30(2):356-361. DING G Y,AN B K,HE X M,et al. Experiment on lean blowout performance of triple axial swirler combustor[J]. Journal of Aerospace Power,2015,30(2):356-361(in Chinese).
[14] 张楷雨,杨金虎,刘富强,等. 多级旋流燃烧室贫油熄火特性的实验研究和数值分析[J]. 燃气轮机技术,2015,28(4):35-41. ZHANG K Y,YANG J H,LIU F Q,et al. Numerical analysis and experimental investigation of lean blowout performance in a multi-swirled gas turbine combustor[J]. Gas Turbine Technology,2015,28(4):35-41(in Chinese).
[15] 丁国玉,何小民,薛冲,等. 头部及掺混孔对三级旋流器燃烧室出口温度分布影响的试验[J]. 航空动力学报,2015,30(4):807-813. DING G Y,HE X M,XUE C,et al. Experiment on effect of dome and dilution holes on outlet temperature distribution for triple swirler combustor[J]. Journal of Aerospace Power,2015,30(4):807-813(in Chinese).
[16] 彭云晖,林宇震,刘高恩. 三旋流器燃烧室出口温度分布的初步试验研究[J]. 航空动力学报,2007,30(4):554-558. PENG Y H,LIN Y Z,LIU G E. A preliminary experimental study of pattern factor for a triple swirler combustor[J]. Journal of Aerospace Power,2007,30(4):554-558(in Chinese).
[17] WANG H Y,MCDONELL V G,SAMUELSEN G S. Influence of hardware design on the flow field structures and the patterns of droplet dispersion[J]. Journal of Engineering for Gas Turbines and Power,1995,117(2):282-289.
[18] VASHAHI F, REZAEI S, DAFSARI RA, et al. Sensitivity analysis of the vane length and passage width for a radial type swirler employed in a triple swirler configuration[J]. Theoretical & Applied Mechanics Letters,2019,9(6):363-375.
[19] VALERA-MEDINA A,SYRED N,BOWEN P. Central recirculation zone visualization in confined swirl combustors for terrestrial energy[J]. Journal of Propulsion & Power,2013,29(1):195-204.
[20] 汤姣. 双级径向叶片式涡流器优化设计及试验研究[D]. 上海:上海交通大学,2017. TANG J. Optimize design and experimental study the dual-stage radial vanes swirler[D]. Shanghai:Shanghai Jiao Tong University,2017(in Chinese).
[21] 王志凯,陈盛,刘冉,等.双级轴向旋流杯气量比对雾化性能影响的试验[J].航空动力学报,2019,34(12):2656-2662. WANG Z K,CHEN S,LIU R,et al. Experiment on effects of airflow ratio on spray characteristics of dual-axial swirl cup[J]. Journal of Aerospace Power,2019,34(12):2656-2662(in Chinese).
[22] RODRIGUEZ-MARTINEZ V,DAWSON J R,SYRED N,et al. The effect of expansion plane geometry on fluid dynamics under combustion instability in a swirl combustor:AIAA-2003-0116[R]. Reston:AIAA, 2003.
[23] SONG H,HAN X,LIN Y,et al. The Effect of the corner recirculation zone on separated stratified swirling flames and combustion instabilities:GT2019-90436[R]. New York:ASME, 2019.
[24] KAO Y H,TAMBE S B,JENG S M. Effect of dome geometry on swirling flow field characteristics of a counter-rotating radial-radial swirler:GT2013-95344[R]. New York:ASME, 2013.
[25] KAO Y H,TAMBE S B,JENG S M. Aerodynamics study of a linearly-arranged 5-swirler array:GT2014-25094[R]. New York:ASME, 2014.
[26] 刘泽宇,张弛,韩啸,等. 分层比对分开分层旋流预混火焰结构的影响[J].航空学报,2018,39(3):121692. LIU Z Y,ZHANG C,HAN X,et al. Effects of stratification ratio on structure of separated stratified premixed swirl flame[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3):121692(in Chinese).
[27] SHANBHOGUE S J, SANUSI Y S,TAAMALLAH S,et al. Flame macrostructures,combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion[J]. Combustion and Flame, 2016,163:494-507.
[28] TAO M Y, ZHAO P, VANDERWEGE B,et al. Further study on wall film effects and flame quenching under engine thermodynamic conditions[J]. Combustion and Flame,2020,216:100-110.
[29] 王俊懿,葛宏达,赵晓敏,等. 当量比对旋流燃烧室火焰形态与流场影响的激光诊断[J]. 实验流体力学,2019,33(4):21-26. WANG J Y,GE H D,ZHAO X M,et al. Measurement and diagnosis of the influence of equivalent ratio on the flame shape and flow field of a swirling combustor[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):21-26(in Chinese).
[30] THIBAULT F G,DANIEL D,LAURENT Z,et al. Analysis of topology transitions of swirl flames interacting with the combustor side wall[J]. Combustion and Flame,2015,162:4342-4357.
[31] ECKEL G,GROHMANN J,CANTU L,et al. LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry[J]. Combustion and Flame,2019,207:134-152.
文章导航

/