机载系统与电子系统专栏

大型民机进近着陆段异常能量风险判据研究

  • 鲁志东 ,
  • 张曙光 ,
  • 戴闰志 ,
  • 黄铭媛
展开
  • 1. 北京航空航天大学 交通科学与工程学院, 北京 100191;
    2. 中国民航上海航空器适航审定中心, 上海 200335

收稿日期: 2020-04-23

  修回日期: 2020-05-21

  网络出版日期: 2020-07-06

基金资助

民用飞机专项科研(MJ-2016-37-12)

Abnormal energy risk criteria of large civil airplanes in approach and landing

  • LU Zhidong ,
  • ZHANG Shuguang ,
  • DAI Runzhi ,
  • HUANG Mingyuan
Expand
  • 1. School of Transportation Science and Engineering, Beihang University, Beijing 100083, China;
    2. Shanghai Aircraft Airworthiness Certification Center, Shanghai 200335, China

Received date: 2020-04-23

  Revised date: 2020-05-21

  Online published: 2020-07-06

Supported by

Specialized Research Fund for Civil Aircraft (MJ-2016-37-12)

摘要

根据大型民机事故统计,进近着陆阶段事故率最高,而其中大部分事故首先表现出异常能量状态,并演变成失控、重着陆、擦尾、冲出跑道等事故类型,或者呈现复飞失败。在归纳上述五类终端事故类型作为重点关注对象基础上,建立典型大型民机飞行数值仿真平台,使用随机模拟和相关性分析方法研究能量状态参数偏离导致进近着陆风险的影响规律。在此基础上,根据仿真结果给出了由关键能量参数确定的能量状态安全边界,可建立不同风场条件及可能的复飞油门下由空速-下滑角参数构成的异常能量预警判据,对于异常能量导致的进近着陆风险预警具有准确性和非保守性。研究结果可为大型民机进近着陆过程的风险预警以及相关飞行控制功能设计提供方法基础。

本文引用格式

鲁志东 , 张曙光 , 戴闰志 , 黄铭媛 . 大型民机进近着陆段异常能量风险判据研究[J]. 航空学报, 2021 , 42(6) : 624132 -624132 . DOI: 10.7527/S1000-6893.2020.24132

Abstract

Statistics of large civil airplanes reveal that the accident rate is the highest in the approach and landing phases and that most of these accidents exhibit initial abnormal energy status which evolves into one of the end accident types such as loss of control, hard landing, tail strike, runway overrun, or go-around failure. This paper summarizes and focuses on the above five types of end accident types, establishing a generic flight simulation tool for large civil airplanes. Stochastic simulation and correlation analysis show the deviation tendency of energy state parameters leading to different types of approach and landing risks. Stochastic simulation results further provide safety boundaries determined by the key energy parameters to avoid the above five end accidents. Warning criteria of the abnormal energy status are then established, described by air-speed vs. glide angle envelops under possible wind conditions and go-around throttle settings, which are shown to be accurate and non-conservative for approach and landing risk warnings caused by abnormal energy. The proposed methods can be applied to on-board risk warning and the related flight control function design for approaching and landing safety of large civil airplanes.

参考文献

[1] AIRPLANES B C. Statistical summary of commercial jet aircraft accidents, worldwide operations, 1959-2016[R]. Seattle:Boeing Commercial Airplane, 2017.
[2] International Air Transport Association. IATA safety report 2018[R]. Montreal:IATA, 2019.
[3] International Air Transport Association. Unstable approaches, risk mitigation policies, procedures and best practices 3rd Edition[R]. Montreal:IATA, 2016.
[4] CORPS S G. Airbus A320 side stick and fly by wire-An update[J]. SAE Transactions, 1986,95(7):1263-1275.
[5] KOEPPEN N A. The influence of automation on aviation accident and fatality rates:2000-2010[R]. Daytona Beach:Embry-Riddle Aeronautical University, 2012.
[6] Federal Aviation Administration. Docket No. FAA-2013-0904 notice No.25-13-14-SC special conditions:Airbus, ModelA350-900 series airplane; electronic flight control system:Lateral directional and longitudinal stability and low energy Awareness[S]. Washington, D.C.:U.S. Department of Transportation, 2014.
[7] Flight Safety Foundation. Flight safety foundation approach-and-landing accident reduction briefing note 4.2-energy management[J]. Flight Safety Digest, 2000, 19(8):75-80.
[8] 陈俊平, 王立新. 低能量状态对飞行安全的危害及改出方法[J].航空学报,2017,38(8):61-71. CHEN J P, WANG L X. Hazards of low energy state to flight safety and recovery methods[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):61-71(in Chinese).
[9] SHISH K, KANESHIGE J, ACOSTA D, et al. Aircraft mode and energy-state prediction, assessment, and alerting[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(4):804-816.
[10] WANG X, SEMBIRING J, KOPPITZ P, et al. Modeling of the aircraft's low energy state during the final approach phase using operational Flight Data[C]//AIAA Scitech 2019 Forum, 2019.
[11] 中国民用航空局.大型飞机公共航空运输承运人运行合格审定规定:CCAR-121-R5[S]. 北京:中国民用航空局, 2017. Civil Aviation Administration of China. Requirements on the certification of the operation of large aircraft public air transport carriers:CCAR-121-R5[S]. Beijing:Civil Aviation Administration of China, 2017(in Chinese).
[12] 中国民用航空局.一般运行与飞行规则:CCAR-91-R3[S]. 北京:中国民用航空局, 2018. Civil Aviation Administration of China. General operating and flight rules:CCAR-91-R3[S]. Beijing:Civil Aviation Administration of China, 2018(in Chinese).
[13] 中国民用航空局. 小型航空器商业运输运营人运行合格审定规则:CCAR-135-R2[S]. 北京:中国民用航空局, 2017. Civil Aviation Administration of China. Operational certification rules for small aircraft commercial transport operators:CCAR-135-R2[S]. Beijing:Civil Aviation Administration of China, 2017(in Chinese).
[14] PURANIK T, JIMENEZ H, MAVRIS D. Energy-based metrics for safety analysis of general aviation operations[J]. Journal of Aircraft, 2017, 54(6):2285-2297.
[15] CARBAUGH D, CASHMAN J, CARRIKER M, et al. Aerodynamic principles of large airplane upsets[J]. Aero Magazine, 1998, 1(3):1-5.
[16] Agenzia Nazionale per la Sicurezza del Volo. Final report on the accident occurred to the aircraft B737-8AS registration marks EI-DYG, Ciampino Airport, 10th November 2008[R]. Rome:ANSV, 2008.
[17] Air Accidents Investigation Branch. Report on the accident to Airbus A319-111, G-EZFV at London Luton Airport, on 14 February, 2012[R]. Hampshire:AAIB, 2013.
[18] BELCASTRO C, FOSTER J. Aircraft loss-of-control accident analysis[C]//AIAA Guidance, Navigation, and Control Conference,2010.
[19] Airman Testing Standards Branch. Airplane flying handbook FAA-H-8083-3B[R]. Washington, D.C.:FAA, 2016.
[20] ALEXEY A K. Main causes of hard landings:Soviet study covers 10 years of accidents and incidents[J]. Flight Safety Foundation, Accident Prevention, 1991, 48(2):1-4.
[21] DAVE C. Tail Strikes:Prevention[J]. Aero Magazine, 2008, 7(1):6-13.
[22] JENKINS M. Reducing runway landing overruns[J]. Aero Magazine, 2012, 12(3):14-19.
[23] 中国民用航空局. 运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. Airworthiness standards of transport category aircraft:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[24] 中国民用航空局. 目视和仪表飞行规范:MH∕T 4023-2007[S]. 北京:中国民用航空局, 2007. Civil Aviation Administration of China. Visual and Instrument Flight Specifications:MH/T 4023-2007[S]. Beijing:Civil Aviation Administration of China, 2007(in Chinese).
[25] AIRBUS S A S. A320 flight crew operating manual[R]. Toulouse:Airbus SAS, 2009.
[26] VAN D P J, CHENG A, HACKLER L. Estimation of landing stopping distances from flight data:DOT/FAA/AR-09/46[R]. Washington, D.C.:U.S. Department of Transportation, 2010.
[27] LAMBREGTS A A. Total energy based flight control system:U.S. Patent 4,536,843[P]. 1985-8-20.
[28] 曲东才, 冯玉光, 程继红, 等. 飞机自动拉平着陆系统设计及仿真[J]. 海军航空工程学院学报, 2013, 28(1):1-5. QU D C, FENG Y G, CHENG J H. Design and Simulation on aircraft auto flatten-out and landing system[J]. Journal of Naval Aeronautical and Astronautical, 2013, 28(1):1-5(in Chinese).
[29] 张庆振, 安锦文. 一种基于飞机总能量控制飞行速度/航迹的解耦控制系统设计新方法[J]. 航空学报, 2004, 25(4):389-392. ZHANG Q Z, AN J W. A new method for designing decoupling controller of flight speed/flight path based on total energy control[J]. Acta Aeronautica et Astronautica Sinica, 2004,25(4):389-392(in Chinese).
[30] 文传源. 现代飞行控制[M]. 北京:北京航空航天大学出版社, 2004:110-111. WEN C Y. Modern flight control[M]. Beijing:Beihang University Press, 2004:110-111(in Chinese).
[31] 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京:国防工业出版社, 1993:46-47. XIAO Y L, JIN C J. Principles of flight in atmospheric disturbances[M]. Beijing:National Defense Industry Press, 1993:46-47(in Chinese).
[32] CAFLISCH R E. Monte Carlo and quasi-monte Carlo methods[J]. Acta Numerical, 1998, 7:1-49.
[33] 万华平, 任伟新, 王宁波. 高斯过程模型的全局灵敏度分析的参数选择及采样方法[J]. 振动工程学报, 2015, 28(5):714-720. WAN H P. REN W X. WANG N B. A Gaussian process model based global sensitivity analysis approach for parameter selection and sampling methods[J]. Journal of Vibration Engineering, 2015, 28(5):714-720(in Chinese).
[34] IOOSS B, LEMAITRE P. A review on global sensitivity analysis methods[M]//Uncertainty management in simulation-optimization of complex systems. Boston, MA:Springer, 2015:101-122.
[35] LAWTON M P, KLEBAN M H, FULCOMER M C. Multiple regression in behavioral research[J]. Journal of Gerontology, 1976, 31(3):358-359.
文章导航

/