基于循环追踪控制的卫星编队构形调整控制律设计

  • 杨慧欣
展开
  • 沈阳航空航天大学 航空宇航学院, 沈阳 110136

收稿日期: 2020-05-28

  修回日期: 2020-06-01

  网络出版日期: 2020-06-24

Cyclic pursuit control method design for spacecraft formation configuration adjustment

  • YANG Huixin
Expand
  • College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2020-05-28

  Revised date: 2020-06-01

  Online published: 2020-06-24

摘要

卫星编队控制问题中,分布式控制优于主从式控制,在编队控制中应用日益广泛。提出了一种基于循环追踪算法的分布式控制策略,分析了该方法的优势。由于循环追踪算法存在编队中心由初始几何中心固定并与运动过程无关的弱点,引进了虚拟灯塔导引进行联合控制实现编队中心可变。建立了三维空间相对运动数学模型,设计非线性循环追踪算法与虚拟灯塔导引联合控制律,对全员联合控制与单星联合控制其余卫星采用非线性循环追踪控制两种方案的计算结果进行比较。结果表明,全员联合控制律的控制方案优于仅单星采用联合控制的方案,两种方案均可实现卫星编队按指定构形运动。

本文引用格式

杨慧欣 . 基于循环追踪控制的卫星编队构形调整控制律设计[J]. 航空学报, 2020 , 41(S2) : 724311 -724311 . DOI: 10.7527/S1000-6893.2020.24311

Abstract

In formation flying control, the cooperative control methods, considered superior to the leader-follower control approaches, have gained increasingly extensive application. A cyclic pursuit strategy based cooperative control algorithm is proposed with its advantages analyzed. Since the formation center is constrained by initial positions of the satellite in formation, virtual beacon guidance is integrated to better control the formation. A three-dimensional mathematical model of relative motion is built, and two control strategies are proposed. One is that all the spacecraft in formation are controlled by the cooperative control method based on cyclic pursuit and virtual beacon guidance. The other is that only one spacecraft is under the cooperative control method, while other spacecraft are controlled only under cyclic pursuit strategy. Simulation results validate the feasibility of the proposed cooperative control method. The strategy of all spacecraft moving under the cooperative control is better. The formation can achieve the configuration adjustment to fly in the expected orbits.

参考文献

[1] SCHARF D P, HADAEGH F Y, PLOEN S R. A survey of spacecraft formation flying guidance and control (Part II):Control[C]//Proceeding of the 2004 American Control Conference. New York:IEEE, 2004:1-7.
[2] LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4):387-403.
[3] WANG Y, YANG X, YAN H. Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12):9439-9447.
[4] WANG Y, JIANG B, Wu Z, et al. Adaptive sliding mode fault-tolerant fuzzy tracking control with application to unmanned marine vehicles[J/OL]. IEEE Transactions on Systems Man, and Cybernetics:Systems, (2020-01-24)[2020-05-20]. https://ieeexplore.ieee.org/abstract/document/8968746. doi:10.1109/TSMC.2020.2964808.
[5] 张博. 多航天器协同飞行分布式控制研究[D]. 西安:西北工业大学, 2013. ZHANG B. Research on distributed control for multiple spacecraft cooperative flying[D]. Xi'an:Northwestern Polytechnical University, 2013(in Chinese).
[6] 郑延斌, 席鹏雪, 王林林, 等. 基于模糊人工势场法的多智能体编队控制及避障方法[J]. 计算机工程与科学, 2019, 41(8):1504-1511. ZHENG Y B, XI P X, WANG L L, et al. A multi-agent formation control and obstacle avoidance method based on fuzzy artificial potential field method[J]. Computer Engineering & Science, 2019, 41(8):1504-1511(in Chinese).
[7] 郑延斌, 席鹏雪, 王林林, 等. 基于人工势场法的多智能体编队避障方法[J]. 计算机应用, 2018, 38(12):3380-3384, 3413. ZHENG Y B, XI P X, WANG L L, et al. Obstacle avoidance method for multi-agent formation based on artificial potential field method[J]. Journal of Computer Applications, 2018, 38(12):3380-3384, 3413(in Chinese).
[8] IQBAL M, NGO T D, LETH J. A generalized hierarchical nearly cyclic pursuit for the leader-following consensus problem in multi-agent systems[J]. Transactions of the Institute of Measurement and Control, 2018, 40(5):1529-1537.
[9] REN W, NATHAN S. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(2):324-333.
[10] MA L L, HOVAKIMYAN N. Cooperative target tracking in balanced circular formation:Multiple UAVs tracking a ground vehicle[C]//Proceedings of the 2013 American Control Conference. New York:IEEE, 2013:5386-5391.
[11] DAINGADE S, SINHA A. Nonlinear cyclic pursuit based cooperative target tracking[J]. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics, 2014, 104:17-30.
[12] 夏盈盈, 孙洪飞. 基于循环追踪的船舶圆形编队控制[J]. 厦门大学学报(自然科学版), 2015, 54(1):93-98. XIA Y Y, SUN H F. Circular formation control of a ship fleet based on the cyclic pursuit strategy[J]. Journal of Xiamen University (Natural Science), 2015, 54(1):93-98(in Chinese).
[13] JAIME L, RAMIREZ R, EMILIO F. New decentralized algorithms for spacecraft formation control based on a cyclic approach[D]. Cambridge:Massachusetts Institute of Technology, 2010.
[14] 杨希祥, 杨涛, 张为华. 基于循环追踪算法的编队航天器交会控制[J]. 国防科技大学学报,2014, 36(1):1-5. YANG X X, YANG T, ZHANG W H. Rendezvous control of spacecraft formation based on cyclic pursuit algorithm[J]. Journal of National University of Defense Technology, 2014, 36(1):1-5(in Chinese).
[15] YANG H X, YANG X X, ZHANG W H. Distributed control of spacecraft formation using improved cyclic pursuit with beacon guidance[J]. Applied Mechanics and Materials, 2012, 138:38-43.
[16] 杨涛. 面向空间任务的追踪理论与应用研究[D]. 长沙:国防科技大学, 2010. YANG T. Research on pursuit theory and its application to space missions[D]. Changsha:National University of Defense Technology, 2010(in Chinese).
[17] YANG T, HU Z, YANG L. Cooperative control for satellite formation reconfiguration via cyclic pursuit strategy[J]. Advanced Materials Research, 2014, 875-877:1153-1159.
[18] MALLIK G R, SINHA A. A study of balanced circular formation under deviated cyclic pursuit strategy[J]. IFAC-PapersOnLine, 2015, 48(5):41-46.
[19] 罗建军, 周亮, 蒋祺祺, 等. 航天器编队的六自由度循环追踪协同控制[J]. 宇航学报, 2017, 38(2):166-175. LUO J J, ZHOU L, JIANG Q Q, et al. 6 DOF coordinated control using cyclic pursuit for space formation[J]. Journal of Astronautics, 2017, 38(2):166-175(in Chinese).
[20] CECCARLLI N, MARCO M D, GARULLI A, et al. Collective circular motion of multi-vehicle systems[J]. Automatica, 2008, 44(12):3025-3035.
文章导航

/