自主空战技术中的机动决策:进展与展望

  • 董一群 ,
  • 艾剑良
展开
  • 复旦大学 航空航天系, 上海 200433

收稿日期: 2020-05-22

  修回日期: 2020-06-01

  网络出版日期: 2020-06-24

Decision making in autonomous air combat: Review and prospects

  • DONG Yiqun ,
  • AI Jianliang
Expand
  • Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433

Received date: 2020-05-22

  Revised date: 2020-06-01

  Online published: 2020-06-24

摘要

自主空战(AAC)是指飞机依靠机载等相关设备,自主进行战场感知、决策及控制,以执飞空战的技术,其核心是机动决策模块。针对该模块的研究,调研了国内外的现有方法,并按照有关方法的核心内涵,将其分为基于数学求解、机器搜索、以及数据驱动3类分别简要概述;针对每一类方法列出了具有代表性的示例技术,并讨论了其优缺点。指出了自主空战决策的研究应立足现有相关方法及技术基础,同时积极吸纳机器学习、人工智能等新兴技术,合理利用各类方法的优点,取长补短,实现自主空战决策的长足发展;有关于该研究设想的关键科学问题及其潜在解决方案也在文中进行了初步讨论。希冀基于针对自主空战决策研究框架及实现方法的概念性讨论,促进其技术发展,推广相关思路在有关国家安全、国民经济建设等领域的应用,以满足国家重大需求和工程实践。

本文引用格式

董一群 , 艾剑良 . 自主空战技术中的机动决策:进展与展望[J]. 航空学报, 2020 , 41(S2) : 724264 -724264 . DOI: 10.7527/S1000-6893.2020.24264

Abstract

In the Autonomous Air Combat (AAC) technique, the aircraft is expected to autonomously perform situational perception, decision making, and control execution in the combat, among which decision making is the core of the AAC technique. This paper reviews the state of the art decision-making methods in the AAC technique by dividing them into three groups, i.e. mathematics-based, knowledge-encoded, and learning-driven methods. We list the representative techniques in each group, discussing both the weaknesses and strengths. We point out that the future development of AAC should root in the traditional mathematical approaches, while also incorporating novel techniques, e.g. machine learning and artificial intelligence. Both challenges and potential solutions to this proposal are listed. This paper delivers a brief analysis of past experiences and future prospects of the AAC development, hoping to promote the academic research and engineering applications.

参考文献

[1] KELLY M J. Performance measurement during simulated air-to-air combat[J]. Hum Factors, 1988, 30(4):495-506.
[2] CARPENTER G, FALCO M. Analysis of aircraft evasion strategies in air-to-air missile effectiveness models:No. RE-506[R]. Bethpage, New York:Grumman Aerospace Corp, 1975.
[3] Byrnes M W. Nightfall:Machine autonomy in air-to-air combat[J]. Air & Space Power Journal, 2014, 28(3):48-75.
[4] STILLION J. Trends in air-to-air combat:Implications for future air superiority[R]. Washington, D.C.:Center for Strategic and Budgetary Assessments, 2015.
[5] DONG Y, AI J, LIU J. Guidance and control for own aircraft in the autonomous air combat:A historical review and future prospects[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(16):5943-5991.
[6] ISAACS R. Differential games:A mathematical theory with applications to warfare and pursuit, control and optimization[M]. North Chelmsford:Courier Dover Publications, 1999.
[7] WONG R E. Some aerospace differential games[J]. Journal of Spacecraft & Rockets, 1967, 4(11):1460-1465.
[8] LYNCH U H. Differential game barriers and their application in air-to-air combat:AFIT-DS/MC/73-1[R]. Ohio:Air Force Institute, 1973.
[9] MERZ A W. The homicidal chauffeur-a differential game[D]. California:Stanford University, 1971.
[10] MERZ A W. The homicidal chauffeur[J]. AIAA Journal, 1974, 12:259-260.
[11] OTHLING J R. W L. Application of differential game theory to pursuit-evasion problems of two aircraft:DS/MC/67-1[R]. Ohia:Air Force Institute, 1970.
[12] LYNCH U H. Differential game barriers and their application in air-to-air combat:AFIT-DS/MC/73-1[R]. Ohia:Air Force Institute, 1973.
[13] OLSTER G J, BREAKWELL J V. Role determination in an aerial dogfight[J]. International Journal of Game Theory, 1974, 3(1):47-66.
[14] KELLEY H, LEFTON L. A preference-ordered discrete gaming approach to air-combat analysis[J]. IEEE Transaction on Automatic Control, 1978, 23(4):642-645.
[15] GETZ W M, PACHTER M. Two-target pursuit-evasion differential games in the plane[J]. Journal of Optimization Theory & Applications, 1981, 34(3):383-403.
[16] GETZ W M, PACHTER M. Capturability in a twotarget game of two cars[J]. Journal of Guidance Control & Dynamics, 1981, 4(1):15-21.
[17] ARDEMA M D, HEYMANN M, RAJAN N. Combat games[J]. Journal of Optimization Theory & Applications, 1985, 46(4):391-398.
[18] ARDEMA A, HEYMANN M, RAJAN N. Analysis of a combat problem:the turret game[J]. Journal of Optimization Theory & Applications, 1987, 54(1):23-42.
[19] LEATHAM A, LINCH U. Two numerical methods to solve realistic air-to-air combat differential games[C]//Proceedings of the 12th AIAA aerospace sciences meeting. Reston:AIAA 1974:74-22.
[20] BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat:NASA CR 2583[R]. Washington, D.C.:NASA, 1975.
[21] BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat:NASA CR 2582[R]. Washington, D.C.:NASA, 1975.
[22] BURGIN G H, EGGLESTON D M. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack:NASA CR 145004[R]. Washington, D.C.:NASA, 1976.
[23] HANKINS III W W. Computer-automated opponent for manned air-to-air combat simulations:NASA TP-1518[R]. Washington, D.C.:NASA, 1979.
[24] GOODRICH K, MCMANUS J. Development of a tactical guidance research and evaluation system (TGRES):AIAA 89-3312[J]. Reston:AIAA, 1989.
[25] GOODRICH K, MCMANUS J. An integrated environment for tactical guidance research and evaluation[C]//Orbital Debris Conference:Technical Issues and Future Directions, 1990:1287.
[26] GOODRICH K H. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation:NASA TM-4440[R]. Washington, D.C.:NASA, 1993.
[27] BATTERSON J G, MORELLI E A. Parameter identification flight test maneuvers for closed loop modeling of the F-18 High Alpha Research Vehicle (HARV):NASACR-198269[R]. Washington, D.C.:NASA, 1996.
[28] ILIFF K W, WANG K C. Flight-determined subsonic longitudinal stability and control derivatives of the F-18 high angle of attack:NASA Technical Memorandum 4786[R]. Washington, D.C.:NASA, 1997.
[29] DONG Y Q, AI J L. Trial input method and own-aircraft state prediction in autonomous air combat[J]. Journal of Aircraft, 2015, 49(3):947-954.
[30] DONG Y Q, AI J L. Maneuvering strategy and own aircraft movement prediction in trial input method-low angle of attack[C]//Proceedings of AIAA Infotech@Aerospace. Reston:AIAA, 2012:2012-2594.
[31] DONG Y Q, HUANG J, AI J L. Visual perception-based target aircraft movement prediction for autonomous air combat[J]. Journal of Aircraft, 2014, 52(2):538-552.
[32] DONG Y Q. Deep Learning-based opponent aircraft attitude detection in autonomous air combat[J]. Journal of Aerospace Information Systems 2019, 16:162-167.
[33] VIRTANEN K, RAIVIO T, HAMALAINEN R. Modeling pilot's sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4):665-677.
[34] VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1080-1091.
[35] FENG C, YAO P. On close-range air combat based on hidden Markov model[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway:IEEE Press, 2016:687-694.
[36] FENG C, JING X N, LI Q N, et al. Theoretical research of decision-making point in air combat based on hidden Markov model[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(3):615-626(In Chinese). 冯超, 景小宁, 李秋妮, 等. 基于隐马尔可夫模型的空战决策点理论研究[J]. 北京航空航天大学学报(自然科学版), 2017, 43(3):615-626.
[37] HE X, JING X N, FENG C. Air combat maneuver decision based on MCTS method[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017(5):36-41(in Chinese). 何旭, 景小宁, 冯超. 基于蒙特卡洛树搜索方法的空战机动决策[J],空军工程大学学报(自然科学版), 2017(5):36-41.
[38] AUSTIN F, CARBONE G, FALCO M, et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6):1143-1149.
[39] XU G D, LV C, WANG G, et al. Research on UCAV Autonomous air combat maneuvering decision-making based on bi-matrix game[J]. Ship Electronic Engineering, 2017, 37(11):24-28(In Chinese). 徐光达, 吕超, 王光辉, 等. 基于双矩阵对策的UCAV空战自主机动决策研究[J]. 舰船电子工程, 2017, 37(11):24-28.
[40] KATZ A. Tree lookahead in air combat[J]. Journal of Aircraft, 1994, 31:970-973.
[41] MA Y, MA X, SONG X. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014(4):10.
[42] MCGREW J, HOW J, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5):1641-1654.
[43] RODIN E Y,AMIN S M. Maneuver prediction in air combat via artificial neural networks[J]. Computers & Mathematics with Applications, 1992, 24:95-112.
[44] TENG T H, TAN A H, TAN Y S, et al. Self-organizing neural networks for learning air combat maneuvers[C]//The 2012 International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE Press, 2012.
[45] POROPUDAS J, VIRTANEN K. Analyzing air combat simulation results with dynamic Bayesian networks[C]//Simulation Conference, 2007:1370-1377.
[46] DU P, LIU H. Study on air combat tactics decision making based on Bayesian networks[C]//20102nd IEEE International Conference on Information Management and Engineering (ICIME). Piscataway:IEEE Press, 2010:317-322.
[47] AKBARI S, MENHAJ M B. A fuzzy guidance law for modeling offensive air-to-air combat maneuver[C]//Joint 9th IFSA world congress and 20th NAFIPS international conference. Piscataway:IEEE Press, 2001:3027-3031.
[48] GHASEMI R, NIKRAVESH S K Y, MENHAJ M B, et al. A near optimal fuzzy modeling of pursuit-evasion in an air combat[J]. WSEAS Transactions on Mathematics, 2004, 3(3):514-521.
[49] GHASEMI R, NIKRAVESH S K Y, MENHAJ M B, et al. A 3-D fuzzy modeling of pilot's performance in the dogfight[EB/OL].[2020-05-22] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.536.7262.
[50] RAO D, BALAS-TIMAR D. A neuro-fuzzy hybridization approach to model the pilot agent in air warfare simulation systems[J]. Journal of Battlefield Technology, 2014, 17(1):17-23.
[51] KARLI M, EFE M O, SEVER H. Air combat learning from F-16 flight information[C]//2017 IEEE international conference on fuzzy systems (FUZZIEEE). Piscataway:IEEE Press,2017:1-6.
[52] ERNEST N, COHEN K, SCHUMACHER C, et al. Learning of intelligent controllers for autonomous unmanned combat aerial vehicles by genetic cascading fuzzy methods[C]//SAE Technical Paper, 2014.
[53] ERNEST N, COHEN K, KIVELEVITCH E, et al. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles[J]. Unmanned Systems, 2015, 3(3):185-204.
[54] ERNEST N, CARROLL D, SCHUMACHER C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1):1-7.
[55] ERNEST N, CARROLL D, BOGART N, et al. Perspectives on genetic fuzzy based artificial intelligence for cooperative control of unmanned fighter aircraft[C]//Proceedings of the 2017 World Congress on Unmanned Systems Engineering, 2017:27-28.
[56] AN X, KOU Y X, LEI Y, et al. Engagement maneuvering strategy of air combat based on fuzzy markov game theory[C]//2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE). Piscataway:IEEE Press, 2011:126-129.
[57] LIU P, MA Y. A deep reinforcement learning based intelligent decision method for UCAV air combat[C]//Asian Simulation Conference, 2017:74-286.
[58] ZHOU Y, MA Y, SONG X, et al. Hierarchical fuzzy ART for Q-learning and its application in air combat simulation[J]. International Journal of Modeling Simulation & Entific Computing, 2017, 8:1750052.
[59] DONG Y Q, ZHANG Y, AI J L. Experimental test of artificial potential field-based automobiles automated perpendicular parking[J]. International Journal of Vehicular Technology, 2016, 10:2306818.
[60] LIU X, GONG D. A comparative study of A-star algorithms for search and rescue in perfect maze[C]//2011 International Conference on Electric Information and Control Engineering. Piscataway:IEEE Press, 2011:24-27.
[61] DONG Y, CAMCI E, KAYACAN E. Faster rrt-based nonholonomic path planning in 2d building environments using skeleton-constrained path biasing[J]. Journal of Intelligent & Robotic Systems, 2018, 89(3-4):387-401.
[62] ICHTER B, HARRISON J, PAVONE M. Learning sampling distributions for robot motion planning[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2018:7087-7094.
[63] DONG Y, ZHONG Y, YU W, et al. Mcity data collection for automated vehicles study[J]. arXiv preprint arXiv:1912.06258, 2019.
[64] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics:The kitti dataset[J]. The International Journal of Robotics Research, 2013, 32(11):1231-1237.
[65] SHAW R L. Fighter combat-tactics and maneuvering[M]. Annapolis, Maryland:Naval Institute Press, 1985.
文章导航

/