电子电气工程与控制

基于梯度下降法的翼伞系统最优分段航迹规划

  • 陈奇 ,
  • 赵敏 ,
  • 李宇辉 ,
  • 何紫阳
展开
  • 1. 淮阴工学院 电子信息工程学院, 淮安 223003;
    2. 南京航空航天大学 自动化学院, 南京 210016

收稿日期: 2020-05-15

  修回日期: 2020-06-06

  网络出版日期: 2020-06-24

基金资助

国家自然科学基金(51875289,61873124);航空科学基金(2016ZD52036)

Optimal segment constant trajectory planning for parafoil system based on gradient descent method

  • CHEN Qi ,
  • ZHAO Min ,
  • LI Yuhui ,
  • HE Ziyang
Expand
  • 1. Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an 223003, China;
    2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-05-15

  Revised date: 2020-06-06

  Online published: 2020-06-24

Supported by

National Natural Science Foundation of China (51875289, 61873124), Aeronautical Science Foundation of China (2016ZD52036)

摘要

传统最优控制航迹规划一般以逆风精确着陆、控制能量小为优化目标,但传统最优控制的操纵过程一般是一条连续变化的曲线,工程上不易实施;与之相比,传统分段航迹规划操纵简单,工程上容易实施,能实现逆风精确着陆的目标,但控制能耗大。为了兼顾逆风精确着陆、能耗低和控制操作简单等目标,提出了一种基于梯度下降法的翼伞最优分段航迹规划方法。该方法将控制变量参数化,将逆风精确着陆、控制能耗小、能实现避障等多目标优化问题转化为加权单目标优化问题,并通过梯度下降法求解得到分段常值最优归航航迹。所提算法与基于伪谱法的最优控制规划航迹和基于遗传算法的分段规划航迹进行了对比,算法仿真结果表明本文提出的最优分段航迹规划法既可以实现着陆精度高、控制能量小、逆风着陆和避障的优化目标,同时规划的航迹又由分段常值实现控制,工程上容易实施,兼顾了最优控制航迹规划和分段航迹规划的优点。

本文引用格式

陈奇 , 赵敏 , 李宇辉 , 何紫阳 . 基于梯度下降法的翼伞系统最优分段航迹规划[J]. 航空学报, 2020 , 41(12) : 324226 -324226 . DOI: 10.7527/S1000-6893.2020.24226

Abstract

Traditional optimal control trajectory planning algorithms take precise landing against the wind and low energy consumption as the optimization objectives. However, the control process is usually a continuous curve, which is difficult to implement in engineering. Though the traditional multiphase trajectory planning algorithm can achieve the goal of precise upwind landing with a simple control process, the control energy consumption is large. To balance the objectives of precise upwind landing, low energy consumption, obstacle avoidance, and simple control operations, an optimal segment constant trajectory planning algorithm for parafoil systems based on the gradient descent method is proposed in this paper. In this algorithm, the control variable is parameterized, and the multi-objective optimization problems such as precise upwind landing, low control energy consumption and obstacle avoidance are transformed into weighted single objective optimization problems, and the optimal problem is solved using the gradient descent method. This paper further compares the proposed trajectory planning algorithm, the Gaussian pseudo-spectral optimal control trajectory planning algorithm, and the genetic multiphase trajectory planning algorithm, showing that the proposed optimal segment constant trajectory planning algorithm can achieve high landing precision, low control energy consumption, upwind landing and obstacle avoidance, with the control value being segment constant, which is easy to implement in engineering.

参考文献

[1] 朱虹,孙青林,邬婉楠,等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6):122593. ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):122593(in Chinese).
[2] 陆伟伟,张红英,连亮. 大型翼伞的三维气动性能分析[J]. 航天返回与遥感, 2015, 36(3):1-10. LU W W, ZHANG H Y, LIAN L. A three-dimensional analysis on aerodynamic performance of a large parafoil[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(3):1-10(in Chinese).
[3] 熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科技大学, 2005. XIONG J. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005.
[4] 高海涛,张利民,孙青林,等. 基于伪谱法的翼伞系统归航轨迹容错设计[J]. 控制理论与应用, 2013, 30(6):702-708. GAO H T, ZHANG L M, SUN Q L, et al. Fault-tolerance design of homing trajectory for parafoil system based on pseudo-spectral method[J]. Control Theory & Applications, 2013, 30(6):702-708(in Chinese).
[5] 罗淑贞,孙青林,檀盼龙,等. 基于高斯伪谱法的翼伞系统复杂多约束轨迹规划[J]. 航空学报. 2017, 38(3):220-230. LUO S Z, SUN Q L, TAN P L, et al. Trajectory planning of parafoi system with intricate constraints based on Gauss pseudo-spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):220-230(in Chinese).
[6] SUN H, LUO S, SUN Q, et al. Trajectory optimization for parafoil delivery system considering complicated dynamic constraints in high-order model[J]. Aerospace Science and Technology, 2020, 98:105631.
[7] ZHANG L M, GAO H T, LI W X, et al. Multi-objective trajectory optimization method of parafoil based on particle swarm algorithm[C]//Proceedings of the 38th Chinese Control Conference, 2019.
[8] WEINSTEIN M J, STREETMAN B J, NEAVE M, et al. Trajectory optimization via particle swarms for robust parafoil guidance[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[9] 陶金,孙青林,朱二琳,等. 基于遗传算法带约束的翼伞系统归航轨迹设计[J]. 中南大学学报(自然科学版), 2017, 48(2):404-410. TAO J, SUN Q L, ZHU E L, et al. Genetic algorithm based homing trajectory planning of parafoil system with constraints[J]. Journal of Central South University (Science and Technology), 2017, 48(2):404-410(in Chinese).
[10] 陶金, 孙青林, 朱二琳, 等. 基于量子遗传算法的翼伞系统归航轨迹规划[J]. 哈尔滨工程大学学报, 2016, 37(9):1261-1268. TAO J, SUN Q L, ZHU E L, et al. Homing trajectory planning of parafoil system based on quantum genetic algorithm[J]. Journal of Harbin Engineering University, 2016, 37(9):1261-1268(in Chinese).
[11] 梁海燕,任志刚,许超,等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1003-1011. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015, 32(8):1003-1011(in Chinese).
[12] 蒋华晨, 梁海燕, 曾德堂, 等. 翼伞系统威胁规避最优归航轨迹设计[J]. 哈尔滨工程大学学报, 2016, 37(7):955-962. JIANG H C, LIANG H Y, ZENG D T, et al. Design of the optimal homing trajectory of a parafoil system considering threat avoidance[J]. Journal of Harbin Engineering University, 2016, 37(7):955-962(in Chinese).
[13] 熊菁,秦子增,程文科,等. 翼伞系统分段归航轨迹的优化设计[J]. 航天返回与遥感, 2004, 25(3):11-16. XIONG J, QIN Z Z, CHEN W K, et al. Optimal design in multiphase trajectory of parafoil system[J]. Spacecraft Recovery & Remote Sensing, 2004, 25(3):11-16(in Chinese).
[14] 张兴会,朱二琳. 基于能量约束的翼伞系统分段归航设计与仿真[J]. 航天控制, 2011, 29(5):43-47. ZHANG X H, ZHU E L. Design and simulation in the multiphase homing of parafoil system based on energy confinement[J]. Aerospace Control, 2011, 29(5):43-47(in Chinese).
[15] 郑成,吴庆宪,姜长生,等. 基于IAGA的翼伞系统分段归航轨迹的优化[J]. 电光与控制, 2011, 18(2):69-72. ZHENG C, WU Q X, JIANG C S, et al. Optimization in multiphase homing trajectory of parafoil system based on IAGA[J]. Electronics Optics & Control, 2011, 18(2):69-72(in Chinese).
[16] 陶金, 孙青林, 陈增强, 等. 翼伞系统在较大风场中的归航控制[J]. 控制理论与应用, 2016, 33(12):1630-1638. TAO J, SUN Q L, CHEN Z Q, et al. Homing control of a parafoil system in large wind environments[J]. Control Theory & Applications, 2016, 33(12):1630-1638(in Chinese).
[17] 赵志豪,赵敏,陈奇,等. 基于IAFSA的四自由度翼伞分段归航设计[J]. 火力与指挥控制, 2017, 42(2):64-68. ZHAO Z H, ZHAO M, CHEN Q, et al. Design in multiphase homing of 4-DOF parafoil system based on improved artificial fish-swarm algorithm[J]. Fire Control & Command Control, 2017, 42(2):64-68(in Chinese).
[18] OCHI Y. Modeling and simulation of flight dynamics of a relative-roll-type parafoil[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[19] ROSICH A, GURFIL P. Coupling in-flight trajectory planning and flocking for multiple autonomous parafoils[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2012, 226(6):691-720.
[20] 胡文治, 陈建平, 张红英, 等. 翼伞空投系统的动力学建模与飞行控制仿真[J]. 航空计算技术, 2017, 47(3):70-73, 79. HU W Z, CHEN J P, ZHANG H Y, et al. Dynamic modeling and flight control simulation of parafoil aerial delivery system[J]. Aeronautical Computing Technique, 2017, 47(3):70-73, 79(in Chinese).
文章导航

/