流体力学与飞行力学

耗氧型惰化反应器起燃特性

  • 冯诗愚 ,
  • 任童 ,
  • 谢辉辉 ,
  • 彭孝天 ,
  • 王晨臣 ,
  • 王洋洋 ,
  • 潘俊
展开
  • 1. 南京航空航天大学 航空学院 飞行器环境控制与生命保障工业和信息化部重点实验室, 南京 210016;
    2. 航空工业江西洪都航空工业集团有限责任公司, 南昌 330024;
    3. 中国航空工业集团有限公司 南京机电液压工程研究中心 航空机电系统综合航空科技重点实验室, 南京 211106

收稿日期: 2020-05-05

  修回日期: 2020-06-16

  网络出版日期: 2020-06-24

基金资助

国家自然科学基金委员会-中国民用航空局民航联合研究基金(U1933121);中央高校基本科研业务费专项资金;江苏省研究生科研与实践创新计划(KYCX19_0198);江苏高校优势学科建设工程

Light-off characteristics of oxygen-consuming inerting reactor

  • FENG Shiyu ,
  • REN Tong ,
  • XIE Huihui ,
  • PENG Xiaotian ,
  • WANG Chenchen ,
  • WANG Yangyang ,
  • PAN Jun
Expand
  • 1. Key Laboratory of Aircraft Environmental Control and Life Support, MIIT, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AVIC Jiangxi Hongdu Aviation Industry Group Corporation Limited, Nanchang 330024, China;
    3. Aviation Key Laboratory of Science and Technology on Aero-Electromechanical System Integration, Nanjing Engineering Institute of Aircraft Systems, Aviation Industry Corporation of China, Nanjing 211106, China

Received date: 2020-05-05

  Revised date: 2020-06-16

  Online published: 2020-06-24

Supported by

Joint Research Funds of National Natural Science Foundation of China and Civil Aviation Administration of China(U1933121); the Fundamental Research Funds for the Central Universities; Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX19_0198);Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

通过CFD方法建立了一个耦合化学反应的多孔介质二维拟均相反应器模型,研究了耗氧型惰化系统在不同工况下反应器的操作范围及工作性能。以RP-3燃油为研究对象,采用Fluent 17.0软件的多孔介质单温度模型,通过UDS (User Defined Scalar)添加固相能量方程,采用源项形式添加化学反应热到固相能量方程。研究了不同参数对反应器起燃过程的影响,并给出了起燃过程内反应器催化床温度的变化过程。结果显示:反应器起燃过程中,催化床温度十分不均匀;RP-3摩尔分数的增加可大幅度缩短起燃时间,并且可降低起燃温度;存在一个适宜的气体速度使得反应器能够快速起燃。

本文引用格式

冯诗愚 , 任童 , 谢辉辉 , 彭孝天 , 王晨臣 , 王洋洋 , 潘俊 . 耗氧型惰化反应器起燃特性[J]. 航空学报, 2021 , 42(3) : 124182 -124182 . DOI: 10.7527/S1000-6893.2020.24182

Abstract

A two-dimensional quasi-homogeneous reactor model of porous media coupled with chemical reactions via the CFD method is established. The operating range and performance of the reactor under different operating conditions are studied using this model. Taking RP-3 fuel as the research object, using a single temperature model of porous media in Fluent 17.0 software, we add the solid phase energy equation through UDS (User Defined Scalar), and add the chemical reaction heat to the solid phase energy equation through the source term. The effect of key parameters on the ignition process of the reactor and the temperature change of the reactor catalytic bed during the ignition process are simulated. The results show that the temperature of the catalytic bed is uneven during the ignition process of the reactor; the increase of the mole fraction of RP-3 can considerably reduce both the ignition time and the ignition temperature; an appropriate gas velocity exists to enable fast reactor light-off.

参考文献

[1] 屠敏,袁耿民,薛飞,等. 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020, 41(6):523629. TU M, YUAN G M, XUE F, et al. Application of integrated thermal management in development of advanced fighter system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523629(in Chinese).
[2] WILLIAM M C. Developing a fuel-tank inerting system[R]. Washington, D.C.:Joint Aircraft Survivability Program Office, 2005.
[3] MICHAEL B, WILLIAM M C, RICHARD H, et al. Flight-testing of the FAA onboard inert gas generation system on an airbus A320:DOT/FAA/AR-03/58[R]. Washington, D.C.:Federal Aviation Administration, 2004.
[4] CAI Y, BU X Q, LIN G P, et al. Experimental study of an aircraft fuel tank inerting system[J]. Chinese Journal of Aeronautics, 2015, 28(2):394-402.
[5] WALKER S, JUNG W, ROBERTSON S. Demonstration of a novel catalyst based green on board inert gas generation system (GOBIGGSTM) for fuel tank inerting[C]//American Helicopter Society 69th Annual Forum. Fairfax:American Helicopter Society, 2013.
[6] 薛勇, 刘卫华, 高秀峰, 等. 机载惰化系统中空纤维膜分离性能的实验研究[J]. 西安交通大学学报, 2011, 45(3):107-111. XUE Y, LIU W H, GAO X F, et al. Experimental study on separation performance of hollow fiber membrane for onboard inert gas generating system[J]. Journal of Xi'an Jiaotong University, 2011, 45(3):107-111(in Chinese).
[7] 王明波, 邵垒, 潘俊, 等.耗氧型燃油箱惰化技术历史和现状[J]. 航空科学技术, 2016, 27(7):1-7. WANG M B, SHAO L, PAN J,et al. History and current status of oxygen consumption based fuel tank inerting technology[J]. Aeronautical Science and Technology, 2016, 27(7):1-7(in Chinese).
[8] WALKER S, LIMAYE S, JUNG W, et al. Catalytic reactive component reduction system and methods for the use thereof:US2017328312A1[P]. 2017-11-16.
[9] JOHNSON R W, ZAKI R, YATES S F. Advanced carbon dioxide fuel tank inerting system:US20080128048[P]. 2008-01-28.
[10] LIMAYE S, KOENIGK D. Catalytic reactive component reduction system and methods for the use thereof:US2008199376A1[P]. 2008-08-21.
[11] 冯诗愚,邵垒,李超越,等. 航空燃油类型对催化惰化系统性能的影响[J]. 航空学报,2016,37(6):1819-1826. FENG S Y, SHAO L, LI C Y, et al. Performance of catalytic inerting system affected by various aviation jet fuels[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1819-1826(in Chinese).
[12] WANG F Q, SHUAI Y, WANG Z Q, et al. Thermal and chemical reaction performance analyses of steam methane reforming in porous media solar thermochemical reactor[J]. International Journal of Hydrogen Energy, 2014, 39(2):718-730.
[13] GAO X, ZHU Y P, LUO Z H. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors[J]. Chemical Engineering Science, 2011, 66(23):6028-6038.
[14] 徐艳, 李瑞, 陈明鸣, 等. CO气相偶联制草酸二乙酯工艺流程模拟[J]. 高校化学工程学报, 2010, 24(2):208-213. XU Y, LI R, CHEN M M, et al. Simulation of synthesizing diethyl oxalate by gaseous phase coupling carbon monoxide and ethyl nitrite[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2):208-213(in Chinese).
[15] 龙回龙, 许明杰, 于东华,等. 基于FLUENT水气变换反应在多孔介质内的两温度模型[J].计算机与应用化学, 2012, 29(8):981-985. LONG H L, XU M J, YU D H, et al. Two-temperature model of water gas shift reaction in porous media based on FLUENT[J]. Computer and Applied Chemistry, 2012, 29(8):981-985(in Chinese).
[16] 谢辉辉,冯诗愚,彭孝天,等. 耗氧型惰化系统反应器性能理论研究[J]. 北京航空航天大学学报, 2019, 45(11):2312-2319. XIE H H, FENG S Y, PENG X T, et al. Theoretical research on reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11):2312-2319(in Chinese).
[17] WAKAO N, KAGUEI S, FUNAZKRI T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds:Correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34(3):325-336.
[18] GUARDO A, COUSSIRAT M, LARRAYOZ M, et al. CFD flow and heat transfer in nonregular packings for fixed bed equipment design[J]. Industrial and Engineering Chemistry Research, 2004, 43(22):7049-7056.
文章导航

/