In consideration of the problems of strong control ability and multi-terminal constraints in the Terminal Area Energy Management (TAEM) of lifting reentry vehicles, the TAEM phase is divided into two stages: the dynamic pressure tracking stage and the pre-landing stage. Different longitudinal trajectory profiles are designed for the two stages respectively to transform the online trajectory generation problem in the TAEM phase into a single parameter search problem. In the first stage, the longitudinal reference trajectory is the nominal dynamic pressure profile, which ensures the aircraft process constraints. In the second stage, the longitudinal trajectory is designed as the nominal height profile to guarantee the height and inclination constraints of the terminal point. The dynamic pressure profile of the first stage is modified iteratively by designing a correction law according to the dynamic pressure error at the TAEM terminal. In the process of online trajectory recurrence, the numerical integration with time as the independent variable is adopted, and the closed-loop guidance law is introduced by adjusting the angle of attack to track the dynamic pressure profile and modifying the bank angle to track the ground trajectory. Consequently, the trajectory generated online conforms to the physical properties and the difficulty of closed-loop guidance is reduced. Numerical simulation considering large range state dispersion at the end of initial reentry shows the robustness of the proposed algorithm.
[1] JON C H,CLAUDE A G. Shuttle entry guidance:NASA-TM-79949[R]. Washington, D.C.:NASA,1979.
[2] MEASE K D, KREMER J P. Shuttle entry guidance revisited using nonlinear geometric methods[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6):1350-1356.
[3] LU P. Entry guidance:A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014,37(3):713-728.
[4] 龚宇莲,陈上上. 再入飞行器末端能量管理段纵向剖面优化方法[J]. 空间控制技术与应用,2018, 44(3):28-35. GONG Y L, CHEN S S. TAEM vertical profile optimization algorithm for reentry vehicle[J]. Aerospace Control and Application, 2018, 44(3):28-35(in Chinese).
[5] THOMAS E M. Space shuttle entry terminal area energy management:NASA Technical Memorandum 104744[R] Washington, D.C.:NASA, 1991.
[6] CRAIG A K, KENNETH R H. Terminal trajectory planning and optimization for an unpowered reusable launch vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005.
[7] ANAND M, WERNER G, KLAUS H W. Adaptive guidance for terminal area energy management (TAEM) of reentry vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA,2006.
[8] 胡孟权.RLV末端能量管理段轨迹实时生成算法研究[J]. 飞行力学,2007,25(2):21-24. HU M Q. On-line terminal area energy management trajectory planning for RLV[J]. Flight Dynamic, 2007,25(2):21-24(in Chinese).
[9] KLUEVER C A. Terminal guidance for an unpowered reusable launch vehicle with bank constraints[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):162-168.
[10] 沈宏良,龚正.航天飞机末端能量管理段在线轨迹设计方法[J].宇航学报,2008,29(2):430-433. SHEN H L,GONG Z. Methodology of onboard trajectory design for space shuttle terminal area energy management phase[J]. Journal of Astronautics, 2008,29(2):430-433(in Chinese).
[11] 张军,黄一敏,杨一栋. RLV末端能量管理段三维制导轨迹推演研究[J]. 系统工程与电子技术, 2010,32(8):1727-1731. ZHANG J, HUANG Y M, YANG Y D. Research on 3-D guidance trajectory propagation of terminal area energy management for RLVs[J]. Systems Engineering and Electronics[J]. 2010,32(8):1727-1731(in Chinese).
[12] 王鹏,党晓康,马松辉. RLV末端能量管理段轨迹优化与纵向控制律设计[J]. 电子设计工程, 2014,22(20):42-48. WANG P, DANG X K, MA S H. Trajectory optimization and longitudinal control for terminal area energy management of reusable launch vehicle[J]. Electronic Design Engineering,2014,22(20):42-48(in Chinese).
[13] RIDDER S D, MOOI E J. Optimal terminal-area strategies and energy-tube concept for a winged re-entry vehicle[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2009.
[14] RIDDER S D, MOOIJ E. Terminal area trajectory planning using the energy-tube concept for reusable launch vehicles[J]. Acta Astronautica,2011,68(7-8):915-930.
[15] ZHOU M, ZHOU J, GUO J G. Terminal area guidance for reusable launch vehicles[J]. Journal of Aerospace Engineering, 2016, 230(2) 333-349.
[16] 周敏,周军,郭建国. RLV末端能量管理段轨迹在线规划与制导[J]. 宇航学报, 2015,36(2):151-157. ZHOU M, ZHOU J, GUO J G. On-line trajectory planning and guidance for terminaI area energy management of reusable launch vehicle[J]. Journal of Astronautics,2015,36(2):151-157(in Chinese).
[17] ZHOU M, ZHOU J, GUO J G. Terminal area energy management trajectory planning for an unpowered reusable launch vehicle with gliding limitations[J]. Applied Mechanics and Materials,2014(446-447):611-615.
[18] MU L X, YU X, ZHANG Y M, et al. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase[J]. Acta Astronautica, 2019(143):62-75.
[19] 穆凌霞,李平,李乐尧, 等. RLV末端能量管理段轨迹在线轨迹规划算法[J]. 系统工程与电子技术, 2017,39(3):591-598. MU L X, LI P, LI L Y, et al. Onboard Trajectory planning algorithm for terminal area energy management phase of a RLV[J]. Systems Engineering and Electonics, 2017,39(3):591-598(in Chinese).
[20] 韩鹏,李明涛,高东.一种TAEM段结合迭代校正的轨迹快速生成算法[J]. 哈尔滨工业大学学报, 2017,49(10):66-71. HAN P, LI M T, GAO D. A rapid TAEM trajectory planner based on iterative correction algorithm[J]. Journal of Harbin Institute of Technology, 2017,49(10):66-71(in Chinese).
[21] 潘彦鹏,周军,呼卫军.一种基于在线能量推演的自适应末端能量管理方法[J].西北工业大学学报. 2012, 30(5):757-762. PAN Y P, ZHOU J, HU W J. Effective and adaptive method of terminal area energy management(TAEM) based on online energy backstepping[J]. Journal of Northwestern Polytechnical University. 2012, 30(5):757-762(in Chinese).
[22] 樊朋飞,刘蛟龙,凡永华,等. 基于参数化轨迹的TAEM段在线制导方法[J].航空学报.2018, 39(12):322382. FAN P F, LIU J L, FAN Y H, et al. In-flight TAEM guidance based on parameterized trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322382(in Chinese).
[23] 胡军.载人飞船全系数自适应再入升力控制[J].宇航学报, 1998, 19(1):8-12. HU J. All coefficients adaptive reentry lifting control of manned spacecraft[J]. Journal of Astronautics, 1998, 19(1):8-12(in Chinese).
[24] ZHANG Z, HU J. Prediction-based guidance algorithm for high-lift reentry vehicles[J]. Science China, 2011, 54(3):498-510.
[25] 李毛毛.火星进入段自适应预测校正制导方法[J].宇航学报, 2017, 38(5):506-515. LI M M. An adaptive predictor-corrector method of mars entry phase[J]. Journal of Astronautics, 2017, 38(5):506-515(in Chinese).