综述

空间机械臂技术综述及展望

  • 刘宏 ,
  • 刘冬雨 ,
  • 蒋再男
展开
  • 哈尔滨工业大学 机电工程学院, 哈尔滨 150080

收稿日期: 2020-04-30

  修回日期: 2020-05-04

  网络出版日期: 2020-06-18

基金资助

国家自然科学基金(51521003)

Space manipulator technology: Review and prospect

  • LIU Hong ,
  • LIU Dongyu ,
  • JIANG Zainan
Expand
  • School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150080, China

Received date: 2020-04-30

  Revised date: 2020-05-04

  Online published: 2020-06-18

Supported by

National Natural Science Foundation of China (51521003)

摘要

介绍了国外空间机械臂在轨技术验证与工程应用的概况,从任务类型、构型配置、末端执行器与操作方式方面分析了空间机械臂技术的发展趋势。综述了空间机械臂的任务规划、系统控制、路径规划、视觉感知、末端执行器、遥操作控制及地面试验验证7项关键技术。介绍了中国试验七号与天宫二号空间机械臂在轨验证情况,重点介绍了正在研制的中国空间站机械臂基本方案。最后,总结了目前空间机械臂技术存在的问题,并对中国未来空间机械臂技术发展提出了建议。

本文引用格式

刘宏 , 刘冬雨 , 蒋再男 . 空间机械臂技术综述及展望[J]. 航空学报, 2021 , 42(1) : 524164 -524164 . DOI: 10.7527/S1000-6893.2020.24164

Abstract

The overseas space manipulator systems for on-orbit technology verification and engineering applications are reviewed, and the development trend of the space manipulator technology is analyzed from the aspects of task types, robot configurations, end effectors, and operation modes. Seven key technologies of space manipulators are summarized, including task planning, system control, path planning, visual perception, end effectors, teleoperation control, and ground verification. The on-orbit verification experiments of China space manipulators SY-7 and TianGong-2 are presented. Furthermore, the basic scheme of the Chinese space station manipulator system under development is introduced in detail. Finally, in view of the existing problems of the space manipulator technology, suggestions are put forward for the future development of the space manipulator technology in China.

参考文献

[1] FLORESABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.
[2] JOPPIN C, HASTINGS D E. On-orbit upgrade and repair:the Hubble Space Telescope example[J]. Journal of Spacecraft and Rockets, 2006, 43(3):614-625.
[3] GEORGE J B, KARL P S, ANDREW L B, et al. ISS Russian segment motion control system operating strategy during the orbiter repair maneuver[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005:1-10.
[4] ABRAMOVICI A. The Special Purpose Dexterous Manipulator (SPDM) systems engineering effort-A successful exercise in cheaper, faster and (hopefully) better systems engineering[J]. Journal of Reducing Space Mission Cost, 1998, 1(2):177-199.
[5] TERI G, MILES N. Thermal design considerations of the Robotic Refueling Mission (RRM)[C]//41 st International Conference on Environmental Systems. Reston:AIAA, 2011:1-12.
[6] AHLSTROM T D, DIFTLER M A, BERKA R B, et al. Robonaut 2 on the International Space Station:status update and preparations for IVA mobility[C]//AIAA SPACE 2013 Conference and Exposition. Reston:AIAA, 2013:1-14
[7] AMBROSE R A. Development and deployment of Robonaut 2 to the International Space Station[R]. Houston:Johnson Space Center, 2011.
[8] DIFTLER M A,MEHLING J S, ABDALLAH M E, et al. Robonaut 2-The first humanoid robot in space[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2011:2178-2183.
[9] BADGER J, HULSE A, TAYLOR R, et al. Model-based robotic dynamic motion control for the Robonaut 2 humanoid robot[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway:IEEE Computer Society, 2013:62-67.
[10] TALEBIT H A, PATELT R V, ASMER H. Dynamic modeling of flexible-link manipulators using neural networks with application to the SSRMS[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE,1998:673-678.
[11] CRANE C D, DUFFY J, CARNAHAN T. A kinematic analysis of the Space Station Remote Manipulator System (SSRMS)[J]. Jounral of Robotic Systems, 1991, 8(5):637-658.
[12] SATO N, WAKABAYASHI Y. JEMRMS design features and topics from testing[C]//Proceeding 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS). Hubert:Canadian Space Agency, 2001:1120-1129.
[13] MASANORI N, TAKAHISA S, CHIKARA H, et al. On the results of the MFD flight operation[R]. Toyko:NASDA, 1998:1-2.
[14] ODA M. Space robot experiment on NASDA's ETS-VⅡ satellite[C]//Proceeding of IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 1999:1390-1395.
[15] BRUNNER B, HIRZINGER G, LANDZETTEL K, et al. Multisensory shared autonomy and tele-sensor-programming key issues in the Space Robot Technology Experiment ROTEX[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 1993:2123-2129.
[16] HIRZINGER G, BRUNNER B, DIETRICH J, et al. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):649-663.
[17] ALBU-SCHAFFER A, BERTLEFF W, REBELE B, et al. ROKVISS-robotics component verification on ISS current experimental results on parameter identification[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2006:3879-3885.
[18] HIRZINGER G, LANDZETTEL K, REINTSEMA D, et al. ROKVISS-Robotics component verification on ISS[C]//The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Darmstadt:European Space Agency, 2005, 57-67.
[19] LESLIE J Q, TIMOTHY J B, JOHN A S. SRMS assisted docking and undocking for the orbiter repair maneuver[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2005:1-8.
[20] SEARLE I. Space station common berthing mechanism, a multi-body simulation application[R]. Washington,D.C.:NASA, 1994:1-5.
[21] SATOSHI U, TORU K, HIROHIKI U. HTV rendezvous technique and GN&C design evaluation based on 1 st flight on-orbit operation result[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston:AIAA, 2010:1-8.
[22] 朱仁璋, 王鸿芳, 徐宇杰, 等. 从ETS-VⅡ到HTV-日本交会对接/停靠技术研究[J]. 航天器工程, 2011, 20(4):6-31. ZHU R Z,WANG H F,XU Y J, et al. From ETS-VⅡ to HTV:Study of Japanese rendezvous and docking/berthing technologies[J]. Spacecraft Engineering, 2011, 20(4):6-31(in Chinese).
[23] NGUYEN P K, RAVINDRAN R, CARR R, et al. Structural flexibility of the Shuttle Remote Manipulator System Mechanical Arm[C]//AIAA Guidance and Control Conference. Reston:AIAA, 1982:246-256.
[24] ODA M, KIBE K, YAMAGATA F. ETS-VⅡ, space robot in-orbit experiment satellite[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 1996:739-744.
[25] ODA M, INABA N, TAKANO Y, et al. Onboard local compensation on ETS-VⅡ space robot teleoperation[C]//Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway:IEEE, 1999:701-706.
[26] OTT C, ALBU-SCHAFFER A, KUGIY A, et al. A Passivity based cartesian impedance controller for flexible joint robots-Part I:torque feedback and gravity compensation[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2004:2659-2665.
[27] ALBU-SCHAFFER A, OTT C, HIRZINGER G. A passivity based Cartesian impedance controller for flexible joint robots-part Ⅱ full state feedback, impedance design and experiments[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2004:2666-2672.
[28] ALBU-SCHAFFER A, OTT C, HIRZINGER G. A unified passivity based control framework for position, torque and impedance control of flexible joint robots[J]. International Journal of Robotics Research, 2007, 26(1):5-21.
[29] SATOKO A, YOSHIDA K. An adaptive control of a space manipulator for vibration suppression[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2005:1-6.
[30] SPONG M W. Modeling and control of elastic joint robots[J]. Journal of Dynamics Systems, Measurement, and Control, 1987, 109(1):310-319.
[31] DUBOWSKY S, PAPADOPOULOS E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):531-543.
[32] DUBOWSKY S. Path planning for space manipulators to minimizing spacecraft attitude disturbance[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 1991:2522-2528.
[33] YOSHIDA K, HASHIZUME K, ABIKO S. Zero reaction maneuver:flight validation with ETS-VⅡ space robot and extension to kinematically redundant arm[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2001:441-446.
[34] TORRES M A, DUBOWSKY S. Path planning for elastically constrained space manipulator systems[C]//IEEE/RSJ International Conference on Robotics and Automation. Piscataway:IEEE, 1993:812-817.
[35] MAVROIDIS C, ROWE P, DUBOWSKY S. Inferred end-point control of long reach manipulator systems[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 1995:1-6.
[36] HARA N, FUKAZU Y, KANAMIYA Y, et al. Singularity-consistent torque control of a redundant flexible-base manipulator[C]//9th International Conference on Motion and Vibration Control. New York:Springer, 2008:1-10.
[37] TORRES M A, DUDOWSKY S, PISONI A C. Path-planning for elastically-mounted space manipulators:experimental evaluation of the Coupling Map[C]//IEEE/RSJ International Conference on Robotics and Automation. Piscataway:IEEE, 1994:2227-2233.
[38] DUBOWSKY S. The dynamic control of robotic manipulators in space[R]. Washington,D.C.:NASA, 1988:1-6.
[39] 郝颖明, 付双飞, 范晓鹏, 等. 面向空间机械臂在轨服务操作的视觉感知技术[J]. 无人系统技术, 2018, 1(1):54-65. HAO Y M,FU S F, FAN X P, et al. Vision perception technology for space manipulator on-orbit service operations[J]. Unmanned Systems Technology, 2018, 1(1):54-65(in Chinese).
[40] JAXA. HTV4(KOUNOTORI 4) mission press kit[R]. Tokyo:JAXA, 2013:48-52
[41] TURCO S, PERRYMAN S. Ground control concept for on-orbit robotic maintenance operations on the Inter-national Space Station[C]//Space OPS 2004 Conference. Reston:AIAA, 2004:145.
[42] 郭祥艳, 刘传凯, 王晓雪. 加拿大移动服务系统地面遥操作模式综述[J]. 深空探测学报, 2018, 5(1):78-84. GUO X Y, LIU C K, WANG X X. A survey on teleoper-ation of Canada's mobile servicing system[J]. Journal of Deep Space Exploration, 2018, 5(1):78-84(in Chinese).
[43] 王永, 谢圆, 周建亮. 空间机器人大时延遥操作技术研究综述[J]. 宇航学报, 2010, 31(2):299-306. WANG Y, XIE Y, ZHOU J L. A research survey on tele operation of space robot through time delay[J]. Journal of Astronautics, 2010, 31(2):299-306(in Chinese).
[44] PREUSCHE C, REINTSEMA D, LANDZETTEL K, et al. Robotics component verification on ISS ROKVISS-preliminary results for telepresence[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2006:4595-4601.
[45] 李文皓, 张珩, 冯冠华. 复杂大时延的多主多从共享遥操作方法[J]. 航空学报, 2021,42(1):523896. LI W H, ZHANG H, FENG G H. Cooperative teleoperation for multi-master/multi-slave systems with time-varying large delay[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(1):523896.
[46] 徐文福, 梁斌, 李成, 等. 空间机器人微重力模拟实验系统研究综述[J]. 机器人, 2009, 31(1):88-96. XU W F, LIANG B, LI C, et al. A review on simulated micro-gravity experiment system of space robot[J]. Robot, 2009, 31(1):88-96(in Chinese).
[47] JORGENSEN G, BAINS E. SRMS history, evolution and lessons learned[C]//AIAA SPACE Conference and Exposition 2011. Reston:AIAA, 2011:311-319.
[48] CARIGNAN C R, AKIN D L. The reaction stabilization of on-orbit robots[J]. IEEE Control Systems Magazine, 2000, 20(6):19-23.
[49] XU Y S, BROWN H B, FRIEDMAN J, et al. Control system of the self-mobile Space Manipulator[J]. IEEE Transactions on Control Systems Technology, 1994, 2(3):207-219.
[50] 黄献龙, 梁斌, 陈建新, 等. EMR系统机器人运动学和工作空间的分析[J]. 控制工程, 2000(3):1-6. HUANG X L, LIANG B, CHEN J X, et al. Analysis of EMR system robot kinematics and workspace[J]. Control Engineering, 2000(3):1-6(in Chinese).
[51] AGRAWAL S K, HIRZINGER G, LANDZETTEL K, et al. A new laboratory simulator for study of motion of free-floating robots relative to space targets[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4):627-633.
[52] MA O, WANG J G, MISRA S, et al. On the validation of SPDM task verification facility[J]. Journal of Robotic Systems, 2004, 21(5):219-235.
[53] 倪风雷. 空间机械臂关节驱动及控制系统的研究[D]. 哈尔滨:哈尔滨工业大学, 2006:21-40. NI F L. Research on joint drive and control of space manipulator[D]. Harbin:Harbin Institute of Technology, 2006:21-40(in Chinese).
[54] LIANG B, LI C, XUE L, et al. A Chinese small intelligent space robotic system for on-orbit servicing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2006:4602-4607.
[55] LIU H, GAO X H, JIN M H, et al. Development of the Chinese intelligent space robotic system[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2006:994-1001.
[56] 李清华, 燕雁. "一箭三星" 成功发射3颗技术科学试验卫星[J]. 中国航天, 2013(8):11. LI Q H, YAN Y. "Three satellites with one launch" successfully launched three technological and scientific test satellites[J]. Aerospace China, 2013(8):11(in Chinese).
[57] 刘冬雨, 刘宏, 张柏楠, 等. 空间机器人技术在载人航天器的搭载试验研究[C]//首届中国航天大会. 北京:中国宇航学会, 2018:117-125. LIU D Y, LIU H, ZHANG B N, et al. Research on space robotics on-orbit test in manned spacecraft[C]//First Chinese Astronautics Conference. Beijing:Chinese Society of Astronautics, 2018:117-125(in Chinese).
[58] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. SCIENTIA SINICA Technologica, 2018, 48(12):1313-1320(in Chinese).
[59] 周建平. 中国空间站工程总体构想[J]. 载人航天, 2013, 19(2):1-10. ZHOU J P. Chinese space station project overall vision[J]. Manned Spacecraft, 2013, 19(2):1-10(in Chinese).
[60] 李大明, 饶炜, 胡成威, 等. 空间站机械臂关键技术研究[J]. 载人航天, 2014, 20(3):238-242. LI D M, RAO W, HU C W, et al. Key technology review of the research on the space station manipulator[J]. Manned Spacecraft, 2014, 20(3):238-242(in Chinese).
[61] 张大伟, 梁常春, 危清清. 机械臂辅助舱段转位轨迹跟踪控制与精度分析[J]. 载人航天, 2014, 20(2):104-109. ZHANG D W, LIANG C C, WEI Q Q. Trajectory tracking control and accuracy analysis of space robotic arm assisted cabin redocking[J]. Manned Spacecraft, 2014, 20(2):104-109(in Chinese).
[62] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J]. 载人航天, 2015, 21(5):435-443. LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spacecraft, 2015, 21(5):435-443(in Chinese).
文章导航

/