材料工程与机械制造

热障涂层的激光表面改性参数优化和结构设计

  • 郭磊 ,
  • 高远 ,
  • 辛会
展开
  • 1. 天津大学 材料科学与工程学院, 天津 300072;
    2. 天津市现代连接技术重点实验室, 先进陶瓷与加工技术教育部重点实验室, 天津 300072

收稿日期: 2020-04-20

  修回日期: 2020-05-18

  网络出版日期: 2020-06-18

基金资助

国家自然科学基金(51971156)

Laser modification parameters optimization and structural design of thermal barrier coatings

  • GUO Lei ,
  • GAO Yuan ,
  • XIN Hui
Expand
  • 1. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
    2. Tianjin Key Laboratory of Advanced Joining Technology, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin 300072, China

Received date: 2020-04-20

  Revised date: 2020-05-18

  Online published: 2020-06-18

Supported by

National Natural Science Foundation of China (51971156)

摘要

热障涂层是航空发动机涡轮叶片关键核心技术之一,但在服役条件下常受环境沉积物、熔盐等的腐蚀而过早失效。激光表面改性是一种提高涂层抗腐蚀性能的有效办法,但改性涂层的激光工艺优化和结构设计亟待研究。本文采用脉冲Nd:YAG激光系统对Y2O3部分稳定ZrO2(YSZ)热障涂层进行表面改性,研究了激光功率、扫描速度以及光束长度对改性层厚度、微观结构的影响。结果表明,激光改性层呈致密的柱状晶结构,并有纵向裂纹贯穿其中。改性层的厚度与激光功率成正比,受扫描速度影响不大,与光束长度成反比。激光功率过高,则改性层裂纹增加明显;光束长度过大,则改性层与下方涂层的界面缺陷增多,不利于界面结合。优化的激光改性参数为:激光的功率为75~80 W,扫描速度8 mm/s,光束长度为160 mm。设计了双层激光改性层,每层中的纵向裂纹不连续,使得整个改性层中无贯穿的纵向裂纹,有助于抑制高温腐蚀熔体的内渗。

本文引用格式

郭磊 , 高远 , 辛会 . 热障涂层的激光表面改性参数优化和结构设计[J]. 航空学报, 2021 , 42(7) : 424114 -424114 . DOI: 10.7527/S1000-6893.2020.24114

Abstract

Thermal Barrier Coating (TBC) is one of the key technologies of aero engine turbine blades, but it often fails prematurely due to the corrosion resulting from environmental deposits and molten salts under service conditions. Laser surface modification has been considered as an effective way to improve the corrosion resistance of TBCs, but the laser process optimization and structure design of the modified coating need to be studied urgently. In this study, the surfaces of Y2O3 partially stabilized ZrO2 (YSZ) TBCs are modified by a pulsed Nd: YAG laser system. The results showed that the laser modified layer had a dense columnar crystal microstructure, and longitudinal cracks ran through it. The thickness of the modified layer was directly proportional to the laser power, little affected by the scanning speed, and inversely proportional to the beam length. When the laser power is too high, more cracks formed in the modified layer; when the beam length increased, the interface defects between the modified layer and the underlying coating increased, harmful to the interface bonding. The optimized laser modification parameters are: the laser power was 75-80 W, the scanning speed is 8 mm/s, and the beam length is 160 mm. A double-layer laser modified layer is designed. The longitudinal cracks in each layer are discontinuous, which made the whole modified layer free of longitudinal cracks, helpful to suppress the infiltration of corrosion melt at high temperatures.

参考文献

[1] 郭洪波,宫声凯,徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. GUO H B, GONG S K, XU H B. Research progress of new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2722-2732(in Chinese).
[2] MAO W G, WANG Y J, SHI J, et al. Bending fracture behavior of freestanding (Gd0.9Yb0.1)2Zr2O7 coatings by using digital image correlation and FEM simulation with 3D geometrical reconstruction[J]. Journal of Advanced Ceramics, 2019, 8(4):564-575.
[3] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1):1-5. SUN J, LIU S B, LI W, et al. Research progress of thermal barrier coating prepared by electron beam physical vapor deposition[J]. Equipment Environmental Engineering, 2019, 16(1):1-5(in Chinese).
[4] 张天佑, 吴超, 熊征, 等. 热障涂层材料及其制备技术的研究进展[J]. 激光与光电子学进展, 2014, 51(3):030004. ZHANG T Y, WU C, XIONG Z, et al. Research progress in materials and preparation techniques of thermal barrier coatings[J]. Laser & Optoelectronics Progress, 2014, 51(3):030004(in Chinese).
[5] ZHOU X, HE L M, CAO X Q, et al. La2(Zr0.7Ce0.3)2O7 thermal barrier coatings prepared by electron beam-physical vapor deposition that are resistant to high temperature attack by molten silicate[J]. Corrosion Science, 2017, 115:143-151.
[6] 张小锋, 周克崧, 宋进兵, 等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J]. 无机材料学报, 2015, 30(3):287-293. ZHANG X F, ZHOU K S, SONG J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Inorganic Materials, 2015, 30(3):287-293(in Chinese).
[7] 朱晨, 于建海, 郭亚飞, 等. 航空发动机热障涂层存在的问题及其发展方向[J]. 表面技术, 2016, 45(1):13-19. ZHU C, YU J H, GUO Y F, et al. Problems of aircraft engine thermal barrier coating and its developing direction[J]. Surface Technology, 2016, 45(1):13-19(in Chinese).
[8] LIU T, YAO S W, WANG L S, et al. Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection[J]. Journal of Thermal Spray Technology, 2016, 25(1-2):213-221.
[9] 高永栓, 陈立强, 宫声凯, 等. 在高温蠕变环境中的热障涂层失效行为[J]. 航空学报, 2005, 26(1):121-124. GAO Y S, CHEN L Q, GONG S K, et al. Failure behavior of thermal barrier coatings in creep environment[J].Acta Aeronautica et Astronautica Sinica, 2005, 26(1):121-124(in Chinese).
[10] 郭洪波, 魏亮亮, 张宝鹏, 等. 等离子物理气相沉积热障涂层研究[J]. 航空制造技术, 2015(22):26-31. GUO H B, WEI L L, ZHANG B P, et al. Study on plasma spray-physical vapor deposition thermal barrier coatings[J]. Aeronautical Manufacturing Technology, 2015(22):26-31(in Chinese).
[11] XUE Z L, MA Y, GONG S K, et al. Impermeability of Y3Al5O12 ceramic against molten glassy calcium-magnesium-alumina-silicate[J]. Chinese Journal of Aeronautics, 2018, 31(12):2306-2311.
[12] 虞礼嘉, 梁文萍, 林浩, 等. 激光重熔YSZ热障涂层950℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1):77-82. YU L J, LIANG W P, LIN H, et al. Evaluation of hot corrosion behavior of laser as-remelted YSZ thermal barrier coatings at 950℃[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(1):77-82(in Chinese).
[13] WANG J S, SUN J B, ZOU B L, et al. Hot corrosion behaviour of nanostructured zirconia in molten NaVO3 salt[J]. Ceramics International, 2017, 43(13):10415-10427.
[14] 董丽虹, 郭伟, 王海斗, 等. 热障涂层界面脱粘缺陷的脉冲红外热成像检测[J]. 航空学报, 2019, 40(8):422895. DONG L H, GUO W, WANG H D, et al. Inspection of interface debonding in thermal barrier coatings using pulsed thermography[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):422895(in Chinese).
[15] 陈思, 周鑫, 张豪, 等. 熔盐环境下热障涂层新材料Mg2SiO4的高温腐蚀研究[J]. 人工晶体学报, 2019, 48(8):1534-1538, 1570. CHEN S, ZHOU X, ZHANG H, et al. High-temperature corrosion behavior of novel material Mg2SiO4 for thermal barrier coatings in molten salt environments[J]. Journal of Synthetic Crystals, 2019, 48(8):1534-1538, 1570(in Chinese).
[16] 刘林涛, 李争显, 宗洋洋, 等. 激光改性对YSZ热障涂层结构与性能的影响[J]. 稀有金属材料与工程, 2018, 47(4):1238-1242. LIU L T, LI Z X, ZONG Y Y, et al. Influence of laser treatment on the microstructure and properties of YSZ thermal barrier coatings[J]. Rare Metal Materials and Engineering, 2018, 47(4):1238-1242(in Chinese).
[17] YI P, MOSTAGHIMI J, PERSHIN L, et al. Effects of laser surface remelting on the molten salt corrosion resistance of yttria-stabilized zirconia coatings[J]. Ceramics International, 2018, 44(18):22645-22655.
[18] ZHANG P P, ZHANG X F, LI F H, et al. Hot corrosion behavior of YSZ thermal barrier coatings modified by laser remelting and Al deposition[J]. Ceramics International, 2019, 28(6):1225-1238.
[19] MENG G, JI B, HAN H, et al. Design and simulation of an innovative cylinder fabricated by selective laser melting[J]. Chinese Journal of Aeronautics, 2019, 32(1):133-142.
[20] TSAI P C, LEE J H, CHANG C L. Improving the erosion resistance of plasma-sprayed zirconia thermal barrier coatings by laser glazing[J]. Surface & Coatings Technology, 2007, 202(4-7):719-724.
[21] AHMADI M S, SHOJA-RAZAVI R, VALEFI Z, et al. The effect of laser surface treatment on the thermal shock behavior of plasma sprayed Al2O3/YSZ multilayer thermal barrier coatings[J]. Surface & Coatings Technology, 2019, 366:62-69.
[22] LEE J H, TSAI P C, CHANG C L. Microstructure and thermal cyclic performance of laser-glazed plasma-sprayed ceria-yttria-stabilized zirconia thermal barrier coatings[J]. Surface & Coatings Technology, 2008, 202(22-23):5607-5612.
[23] GUO L, XIN H, ZHANG Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance[J]. Journal of Advanced Ceramics, 2020, 9(2):232-242.
[24] GHASEMI R, SHOJA-RAZAVI R, MOZAFARINIA R, et al. Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal bather coatings[J]. Ceramics International, 2013, 39(8):9483-9490.
[25] 郭磊, 辛会, 张馨木, 等. 激光表面改性对熔盐环境下热障涂层相稳定性和微观结构的影响[J]. 表面技术, 2020, 49(1):41-48. GUO L, XIN H, ZHANG X M, et al. Effects of laser surface modification on phase stability and microstructures of thermal barrier coatings in V2O5 molten salt[J]. Surface Technology, 2020, 49(1):41-48(in Chinese).
[26] YAN Z, GUO L, LI Z, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J]. Corrosion Science, 2019, 157(15):450-461.
[27] 马安博, 李婷. 脉冲激光重熔对YSZ涂层微观结构的影响[J]. 电镀与精饰, 2018, 40(4):8-11. MA A B, LI T. Effect of pulse laser remelting on microstructure of YSZ coating[J]. Plating and Finishing, 2018, 40(4):8-11(in Chinese).
[28] BAKKAR S, PANTAWANE M V, GU J J, et al. Laser surface modification of porous yttria stabilized zirconia against CMAS degradation[J]. Ceramics International, 2020, 46(5):6038-6045.
[29] HONG J, LI T, ZHENG H, et al. Applications of structural efficiency assessment method on structural-mechanical characteristics integrated design in aero-engines[J]. Chinese Journal of Aeronautics, 2020, 33(4):1260-1271.
[30] GUO L, LI M Z, YE F X. Phase stability and thermal conductivity of RE2O3 (RE=La, Nd, Gd, Yb) and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics[J]. Ceramics International, 2016, 42(6):7360-7365.
[31] AHMADI M S, SHOJA-RAZAVI R, VALEFI Z, et al. Evaluation of hot corrosion behavior of plasma sprayed and laser glazed YSZ-Al2O3 thermal barrier composite[J]. Optics & Laser Technology, 2019, 111:687-695.
[32] 韩志勇, 张华, 王志平. 热障涂层残余应力的拉曼光谱测量及数值分析[J]. 航空学报, 2012, 33(2):369-374. HAN Z Y, ZHANG H, WANG Z P. Study of residual stress of thermal barrier coatings by raman spectroscopy and numerical analysis[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):369-374(in Chinese).
[33] GHASEMI R, SHOJA-RAZAVI R, MOZAFARINIA R, et al. The influence of laser treatment on hot corrosion behavior of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34(8):2013-2021.
[34] AHMADI-PIDANI R, SHOJA-RAZAVI R, MOZAFARINIA R, et al. Improving the hot corrosion resistance of plasma sprayed ceria-yttria stabilized zirconia thermal barrier coatings by laser surface treatment[J]. Materials & Design, 2014, 57:336-341.
[35] AHMADI-PIDANI R, SHOJA-RAZAVI R, MOZAFARINIA R, et al. Laser surface modification of plasma sprayed CYSZ thermal barrier coatings[J]. Ceramics International, 2013, 39(3):2473-2480.
[36] MORKS M F, BERNDT C C, DURANDET Y, et al. Microscopic observation of laser glazed yttria-stabilized zirconia coatings[J]. Applied Surface Science, 2010, 256(21):6213-6218.
文章导航

/