论文

轮地力学模型参数灵敏度分析与主参数估计

  • 周如意 ,
  • 丰文浩 ,
  • 邓宗全 ,
  • 高海波 ,
  • 丁亮 ,
  • 李楠
展开
  • 哈尔滨工业大学 机器人技术与系统国家重点实验室, 哈尔滨 150080

收稿日期: 2020-04-09

  修回日期: 2020-04-22

  网络出版日期: 2020-06-18

基金资助

国家自然科学基金(51822502,91948202);中央高校基本科研业务费专项资金(HIT.BRETIV201903);"111"计划(B07018)

Sensitivity analysis and dominant parameter estimation of wheel-terrain interaction model

  • ZHOU Ruyi ,
  • FENG Wenhao ,
  • DENG Zongquan ,
  • GAO Haibo ,
  • DING Liang ,
  • LI Nan
Expand
  • State Key Laboratory for Robotics and System, Harbin Institute of Technology, Harbin 150080, China

Received date: 2020-04-09

  Revised date: 2020-04-22

  Online published: 2020-06-18

Supported by

National Natural Science Foundation of China (51822502, 91948202); the Fundamental Research Funds for the Central Universities (HIT.BRETIV201903); "111" Project (B07018)

摘要

在星球探测过程中,星球车需要估计地面力学参数以及时调整控制策略,快速适应地形变化。针对形式复杂,参数耦合的轮地相互作用模型,采用Sobol灵敏度分析方法,分别对模型中的地面承压特性参数和剪切特性参数的灵敏度进行定量分析,筛选出沉陷指数与内摩擦角作为模型的主导参数,用于反映地面承压特性和剪切特性的变化。基于轮地相互作用力学平衡方程,通过简化应力分布公式,进一步推导出主导参数的解析表达式。通过以典型值固定非主导参数,利用系统状态参数和滤波处理完成地面力学特性主导参数的估计。结果表明,所提出的地面力学主导参数解析式及相应的估计方法能够快速反映地形的变化,沉陷指数估计的平均相对误差为2.8%,内摩擦角估计的平均相对误差小于3%。估计结果可准确预测车轮牵引力,为实现实时控制提供必要信息。

本文引用格式

周如意 , 丰文浩 , 邓宗全 , 高海波 , 丁亮 , 李楠 . 轮地力学模型参数灵敏度分析与主参数估计[J]. 航空学报, 2021 , 42(1) : 524076 -524076 . DOI: 10.7527/S1000-6893.2020.24076

Abstract

During planetary exploration, the rover demands the capability of terrain characteristic estimation for timely adjustment of control strategies to quickly adapt to terrain changes. For the parameter-coupled wheel-terrain interaction model with complex forms, the Sobol analysis method is adopted to quantitatively analyze the sensitivity of terrain bearing and shearing characteristic parameters in the model, respectively. In consequence, the sinkage exponent and internal fraction angle are selected as the dominant parameters reflecting significant changes in the terrain bearing and shearing characteristics. Based on the mechanics equilibrium equation of wheel-terrain interaction, the analytical model of the dominant parameters is further derived by simplifying the stress distribution formula. By fixing the non-dominant parameters with typical values, the system state parameters and the filtering process are used to realize dominant parameter estimation of the terrain mechanical characteristics. The results show that the proposed analytical model of the dominant terrain mechanical parameters and the corresponding estimation method can quickly follow the change of terrain properties. The average relative error of the sinkage exponent estimation is 2.8% and that of the internal friction angle estimation is smaller than 3%. The estimation results can accurately predict the traction force of the wheels as well as provide necessary information for real-time traction control.

参考文献

[1] IAGNEMMA K, DUBOWSKY S. Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers[J]. The International Journal of Robotics Research, 2004, 23(10-11):1029-1040.
[2] ISHIGAMI G, NAGATANI K, YOSHIDA K. Slope traversal controls for planetary exploration rover on sandy terrain[J]. Journal of Field Robotics, 2009, 26(3):264-286.
[3] WELCH R, LIMONADI D, MANNING R. Systems engineering the curiosity rover:A retrospective[C]//2013 8th International Conference on System of Systems Engineering, 2013:70-75.
[4] ZHAO W J, WANG C. China's lunar and deep space exploration:Touching the moon and exploring the universe[J]. National Science Review, 2019, 6(6):1274-1278.
[5] LI Y K, DING L, LIU G J. Error-tolerant switched robust extended Kalman filter with application to parameter estimation of wheel-soil interaction[J]. IEEE Transactions on Control Systems Technology, 2014, 22(4):1448-1460.
[6] MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2):161-174.
[7] SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modelling and Computational Experiments, 1993, 1(4):407-414.
[8] MCRAC G J, TILDEN J W, SEINFELD J H. Global sensitivity analysis-A computational implementation of the Fourier amplitude sensitivity test (FAST)[J]. Computers & Chemical Engineering, 1982, 6(1):15-25.
[9] NOSSENT J, ELSEN P, BAUWENS W. Sobol' sensitivity analysis of a complex environmental model[J]. Environmental Modelling & Software, 2011, 26(12):1515-1525.
[10] ARWADE S R, MORADI M, LOUHGHALAM A. Variance decomposition and global sensitivity for structural systems[J]. Engineering Structures, 2010, 32(1):1-10.
[11] 邓宗全, 丁亮, 高海波, 等. 月壤特性对月球车轮地相互作用力的影响[J]. 哈尔滨工业大学学报, 2010, 42(11):1724-1729. DENG Z Q, DING L, GAO H B, et al. Influence of soil properties on lunar rover' s wheel soil interaction mechanics[J]. Journal of Harbin Institute of Technology, 2011, 42(11):1724-1729(in Chinese).
[12] DING L, YOSHIDA K, NAGATANI K, et al. Parameter identification for planetary soil based on a decoupled analytical wheel-soil interaction terramechanics model[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2009:4122-4127.
[13] HUTANGKABODEE S, ZWEIRI Y, SENEVIRATNE L, et al. Soil parameter identification and driving force prediction for wheel-terrain interaction[J]. International Journal of Advanced Robotic Systems, 2008, 5(4):425-432.
[14] SONG X G, GAO H B, DING L, et al. Diagonal recurrent neural networks for parameters identification of terrain based on wheel-soil interaction analysis[J]. Neural Computing and Applications, 2017, 28(4):797-804.
[15] XUE L, LI J Q, ZOU M, et al. In situ identification of shearing parameters for loose lunar soil using least squares support vector machine[J]. Aerospace Science and Technology, 2016, 53:154-161.
[16] IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5):921-927.
[17] LI Y K, DING L, ZHENG Z Z, et al. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots[J]. Mechanical Systems and Signal Processing, 2018, 104:758-775.
[18] BEKKER M G. Introduction to terrain-vehicle systems[M]. Ann Arbor:The University of Michigan Press, 1969.
[19] DING L, GAO H B, DENG Z Q, et al. New perspective on characterizing pressure-sinkage relationship of terrains for estimating interaction mechanics[J]. Journal of Terramechanics, 2014, 52:57-76.
[20] JANOSI Z, HANAMOTO B. Analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]//Proceedings of the 1 st International Conference of ISTVES, 1961:707-726.
[21] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics & Computers in Simulation, 2001, 55(1-3):271-280.
[22] SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering & System Safety, 2003, 79(2):187-193.
[23] HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliability Engineering & System Safety, 1996, 52(1):1-17.
[24] WONG J Y. Theory of ground vehicles[M]. New York:Wiley, 2008.
[25] SHIBLY H, IAGNEMMA K, DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1):1-13.
[26] SKONIECZNY K, SHUKLA D K, FARAGALLI M, et al. Data-driven mobility risk prediction for plane-tary rovers[J]. Journal of Field Robotics, 2019, 36(2):475-491.
[27] GONZALEZ R, LAGNEMMA K. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges[J]. Journal of Field Robotics, 2018, 35(4):564-577.
[28] MAIMONE M, CHENG Y, MATTHIES L. Two years of visual odometry on the Mars exploration rovers[J]. Journal of Field Robotics, 2007, 24(3):169-186.
[29] DING L, GAO H B, LI Y K, et al. Improved explicit-form equations for estimating dynamic wheel sinkage and compaction resistance on deformable terrain[J]. Mechanism & Machine Theory, 2015, 86:235-264.
文章导航

/