材料工程与机械制造

VSV调节机构阻滞力和调节精度的归因分析

  • 张哲 ,
  • 王汉平 ,
  • 孙浩然 ,
  • 刘冬
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 中国航发沈阳发动机研究所, 沈阳 110015

收稿日期: 2019-12-31

  修回日期: 2020-02-12

  网络出版日期: 2020-06-18

Attribution analysis of blocking force and adjustment accuracy of adjusting mechanism of variable stator vane

  • ZHANG Zhe ,
  • WANG Hanping ,
  • SUN Haoran ,
  • LIU Dong
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2019-12-31

  Revised date: 2020-02-12

  Online published: 2020-06-18

摘要

基于ANCF方法和摩擦力的NURBS表达算法,构建了考虑装配间隙、尺寸公差、关键件柔性、热影响以及接触摩擦等因素的复杂VSV调节机构的刚柔耦合动力学模型,并依据部件空间分布关系和参数化表述开发了VSV调节机构的快速自动化建模流程,大大提升了建模效率。分别对VSV调节机构的单级模拟气动实验及热态联调实验状态进行了对比仿真,结果表明,所构建的VSV调节机构模型在阻滞力仿真方面具有较高的可信度,且气动力引起的摩擦力矩是造成机构阻滞力、角度调节迟滞和调节精度下降的主要原因,气动力矩对机构阻滞力和角度迟滞影响不明显,关键件柔性对阻滞力影响较小,但却是调节精度降低的内在因素。

本文引用格式

张哲 , 王汉平 , 孙浩然 , 刘冬 . VSV调节机构阻滞力和调节精度的归因分析[J]. 航空学报, 2020 , 41(12) : 423789 -423789 . DOI: 10.7527/S1000-6893.2020.23789

Abstract

Based on the Absolute Nodal Coordinate Formulation (ANCF) method and the NURBS expression algorithm of friction, a rigid-flexible coupling dynamics model of a complex adjusting mechanism of Variable Stator Vane (VSV) is built, taking into account factors such as the assembly clearances, dimensional tolerances, flexibility of key components, thermal aerodynamic load, and contact friction. According to the parametric representation and the spatial distribution relationship among the components, a rapid automatic modeling process of multibody dynamics for the VSV adjusting mechanism is developed, considerably improving the modeling efficiency. The simulation results of the single-stage experiment cases with emulated thermal aerodynamic loads and the multiple-stage joint commissioning experiment cases with thermal aerodynamic loads of the VSV adjusting mechanism show that the multibody dynamics model has high reliability in the simulation of the blocking force. The friction torque induced by the force components of the aerodynamic load is the main cause of the blocking force, the retardation of the adjustment angle and the reduction of adjustment accuracy of the VSV mechanism. The influence of the torque components of the aerodynamic load on the blocking force and the retardation of the adjustment angle is not obvious. Despite its little effect on the blocking force, the flexibility of the key component is an intrinsic factor that reduces the adjustment accuracy.

参考文献

[1] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安:西北工业大学出版社, 2005:346-387. LIAN X C, WU H. Aeroengine principle[M]. Xi'an:Northwestern Polytechnical University Press, 2005:346-387(in Chinese).
[2] 王云. 航空发动机原理[M]. 北京:北京航空航天大学出版社, 2009:85-99. WANG Y. Aeroengine principle[M]. Beijing:Beihang University Press, 2009:85-99(in Chinese).
[3] 黄爱华. 涡扇发动机可调静子叶片控制规律研究[J]. 燃气涡轮试验与研究, 2017, 30(1):48-51. HUANG A H. Control law of variable stator vane for turbofan engine[J]. Gas Turbine Experiment and Research, 2017, 30(1):48-51(in Chinese).
[4] WIRKOWSKI P. Influence of changes of axial compressor variable stator vanes setting on gas turbine engine work[J]. Journal of Pilish Cimac, 2007, 2(2):511-517.
[5] RIESLAND D. Aircraft engine analysis using ADAMS[R]. 2000.
[6] 李世林. VSV系统对CFM56发动机喘振的影响分析[J]. 科学技术与工程, 2011, 11(20):4934-4936. LI S L. Research on VSV faults based CFM56 engine surge[J]. Science Technology and Engineering, 2011, 11(20):4934-4936(in Chinese).
[7] 杨伟, 罗秋生, 张少平,等. 基于UG和ADAMS的调节机构虚拟样机动力学仿真[J]. 燃气涡轮试验与研究, 2009, 22(2):22-25. YANG W, LUO Q S, ZHANG S P, et al. Dynamics simulation of compressor's adjusting mechanism virtual prototyping based on UG&ADAMS[J]. Gas Turbine Experiment and Research, 2009, 22(2):22-25(in Chinese).
[8] 杨伟, 徐伟. ADAMS参数化分析在高压压气机调节机构设计中的初步应用[J]. 燃气涡轮试验与研究, 2012, 25(4):20-24. YANG W, XU W. Preliminary application of parameterized analysis based on ADAMS in VSV's adjusting mechanism design of high pressure compressor[J].Gas Turbine Experiment and Research, 2012, 25(4):20-24(in Chinese).
[9] 张晓宁, 赵雷, 杨勇刚. 联调机构虚拟样机运动学动力学仿真[J]. 航空发动机, 2014, 40(4):56-60. ZHANG X N, ZHAO L, YANG Y G. Kinematics and dynamics simulation of jointly adjusting mechanism based on virtual prototype technology[J]. Aeroengine, 2014, 40(4):56-60(in Chinese).
[10] 杨勇刚, 张力. 几种摇臂与联动环连接结构对比分析[J]. 航空发动机, 2012, 38(6):34-37. YANG Y G, ZHANG L. Contrast analysis of several rocker and drive ring connecting structure[J]. Aeroengine, 2012, 38(6):34-37(in Chinese).
[11] 闫晓攀. 摇臂变形对导叶角度迟滞的影响分析[C]//第十五届中国科协年会第13分会场:航空发动机设计、制造与应用技术研讨会论文集. 北京:中国科学技术协会学会学术部, 2013:5-11. YAN X P. Analysis of the influence on vanes' angle of the lever deformation[C]//Section 13 of the 15th China Association for Science and Technology Annual Conference:Proceedings of the Symposium on Aero Engine Design, Manufacturing and Application Technology. Beijing:Academic department of Chinese Association of Science and Technology, 2013:5-11(in Chinese).
[12] 胡明, 郑龙席. 基于CATIA和ADAMS的单级可调静子叶片系统仿真分析[J]. 航空制造技术, 2014(8):98-101. HU M, ZHENG L X. Simulation analysis of single-stage variable stator vane system based on CATIA and ADAMS[J]. Aeronautical Manufacturing Technology, 2014(8):98-101(in Chinese).
[13] 梁爽, 印雪梅, 王华. 基于ADAMS的静叶联调机构参数化设计[J]. 航空发动机, 2016, 42(1):65-69. LIANG S, YIN X M, WANG H. Parametric design of stator blade jointly adjusting mechanism based on ADAMS[J]. Aeroengine, 2016, 42(1):65-69(in Chinese).
[14] HENSGES M. Simulation and optimization of an adjustable inlet guide vane for industrial turbo compressors[R]. 2008.
[15] 胡文杰. 发动机多级联调机构动力学特性分析[D].天津:中国民航大学, 2015:16-43. HU W J. The dynamic analysis on multi-stage combine regulation mechanism of aero-engine[D]. Tianjin:Civil Aviation University of China, 2015:16-43(in Chinese).
[16] 张帅. VSV调节机构运动特性的分析方法研究[D].南京:南京航空航天大学, 2015:18-44. ZHANG S. Study on the analysis method of motion characteristics of VSV regulating mechanism[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:18-44(in Chinese).
[17] 张少平, 杨川, 张一彬. 压气机静叶调节机构的柔性多体建模及仿真[J]. 燃气涡轮试验与研究, 2018,31(4):12-18. ZHANG S P, YANG C, ZHANG Y B. Modeling and simulation of the adjusting mechanism of stators through flexible multibody approach[J]. Gas Turbine Experiment and Research, 2018, 31(4):12-18(in Chinese).
[18] SHABANA A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J].Multibody System Dynamics, 1997, 1(3):339-348.
[19] SHABANA A A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics[J]. Nonlinear Dynamics, 1998, 16(3):293-306.
[20] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[R]. Chicago:Department of Mechanical and Industrial Engineering, 1996.
[21] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉:华中科技大学, 2009:16-90. TIAN Q. A dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in engineering[D]. Wuhan:Huazhong University of Science and Technology, 2009:16-90(in Chinese).
[22] 张越, 魏承, 赵阳, 等. 基于ANCF的松弛绳索动力学建模与仿真[J]. 航空学报, 2017, 38(4):162-170. ZHANG Y, WEI C, ZHAO Y, et al. Dynamic modeling and simulation of slack rope based on ANCF[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):162-170(in Chinese).
[23] 陈萌. 基于虚拟样机的接触碰撞动力学仿真研究[D].武汉:华中科技大学, 2003:44-57. CHEN M. Simulation of contact collision dynamics based on virtual prototype[D]. Wuhan:Huazhong University of Science and Technology, 2003:44-57(in Chinese).
文章导航

/