基于模型拼接技术的四旋翼无人机全飞行包线建模

  • 于怿男 ,
  • 梁熠 ,
  • 宋韬 ,
  • 林德福
展开
  • 1. 北京理工大学 宇航学院 无人机自主控制技术实验室, 北京 100081;
    2. 军委装备发展部某中心, 北京 100034

收稿日期: 2020-04-29

  修回日期: 2020-05-15

  网络出版日期: 2020-06-12

基金资助

国家自然科学基金重点项目(U1613225)

Full flight envelope modeling of quadrotor vehicles based on model stitching technique

  • YU Yinan ,
  • LIANG Yi ,
  • SONG Tao ,
  • LIN Defu
Expand
  • 1. UAV Auto nomous Control Technology Laboratory, School of Aerospace, Beijing Institute of Technology, Beijing 100081, China;
    2. Equipment Research and Development Center of Military Committee, Beijing 100034, China

Received date: 2020-04-29

  Revised date: 2020-05-15

  Online published: 2020-06-12

Supported by

Key Program of National Natural Science Foundation of China (U1613225)

摘要

四旋翼无人机在军事和民用领域都有广泛的应用前景。然而,四旋翼无人机具有机载传感器准确性低与可靠性差、不同飞行条件下动力学模型差异大等特点。本文以四旋翼无人机为研究对象,系统地开展了飞行路径重构、频率域系统辨识、全飞行包线建模的相关研究工作。针对机载低成本传感器存在显著常值偏差与量测噪声统计学特性未知的缺点,采用基于EKF的飞行路径重构技术对在飞行试验中无人机的机体空速进行重构;针对不同飞行速度下四旋翼无人机动力学模型差异大的特点,采用频域法辨识得到不同飞行条件下的本体动力学模型;针对四旋翼无人机大跨域的高精度控制需求,利用模型拼接技术,系统性地提出了全飞行包线建模方案,经过验证,所提出模型拼接技术是准确可靠的。

本文引用格式

于怿男 , 梁熠 , 宋韬 , 林德福 . 基于模型拼接技术的四旋翼无人机全飞行包线建模[J]. 航空学报, 2020 , 41(S2) : 724321 -724321 . DOI: 10.7527/S1000-6893.2020.24321

Abstract

Quadrotor vehicles have found wide application in both military and civil fields. However, the onboard sensors of quadrotor vehicles are poor in reliability and accuracy, and the dynamic models of quadrotors vary considerably under different flight conditions. This study systematically examines the flight path reconstruction, frequency domain system identification, and full flight envelope modeling of quadrotor vehicles. To overcome the shortcomings of significant constant bias errors and unknown statistical characteristics of measurement noise of the airborne low-cost sensors, we use the flight path reconstruction technology based on Extended Kalman Filter(EKF) to reconstruct the airspeed of UAVs in flight tests. The frequency domain method is adopted to identify the body dynamics model under different flight conditions aiming at the different characteristics in dynamic models of quadrotor UAVs with different flight speeds. In view of the high-precision control requirements of the four rotor UAVs in large-span areas, a systematic full flight envelope modeling scheme based on the model stitching technology is proposed, which is verified to be accurate and reliable.

参考文献

[1] CHO S H, BHANDARI S, SANDERS F C,et al. System identification and controller optimization of coaxial quadrotor UAV in hover[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[2] GONZÁLEZ-ROCHA J, WOOLSEY C A, SULTAN C,et al. Sensing wind from quadrotor motion[J]. Journal of Guidance, Control, and Dynamics, 2019,42(4):836-852.
[3] LEGOWO A, SULAEMAN E,ROSLI D. Review on system identification for quadrotor Unmanned Aerial Vehicle (UAV)[C]//2019 Advances in Science and Engineering Technology International Conferences (ASET). 2019.
[4] MURPHY P C, HATKE D, AUBUCHON V V,et al. Preliminary steps in developing rapid aero modeling technology[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[5] YUKSEK B, SALDIRAN E, CETIN A,et al.System identification and model-based flight control system design for an agile maneuvering quadrotor platform[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[6] DING X, GUO P, XU K,et al. A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems[J]. Chinese Journal of Aeronautics, 2019,32(1):200-214.
[7] LIU N,CAI Z,ZHAO J,et al. Predictor-based model reference adaptive roll and yaw control of a quad-tiltrotor UAV[J].Chinese Journal of Aeronautics, 2020, 33(1):282-295.
[8] CHEUNG K. An overview of the U.S. Army aviation development directorate quadrotor guidance, navigation, and control project[C]//AHS International 73th Annual Forum & Technology Display. Fort Worth:American Helicopter Society, 2017.
[9] KAPUTA D S, OWENS K J. Quadrotor drone system identification via model-based design and in-flight sine wave injections[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[10] BARIS E, BRITCHER C P, ALTAMIRANO G. Wind tunnel testing of static and dynamic aerodynamic characteristics of a quadcopter[C]//AIAA Aviation 2019 Forum.Reston:AIAA, 2019.
[11] SUN S, DE VISSER C C, CHU Q. Quadrotor gray-box model identification from high-speed flight data[J]. Journal of Aircraft, 2018, 56(2):645-661.
[12] CORRÊA F L, BRINGHENTI C, DE ANDRADE D,et al. Helicopter air data systems calibration using DGPS[C]//AIAA Aviation 2019 Forum.Reston:AIAA, 2019.
[13] YU Y, TANG P, SONG T,et al. A two-step method for system identification of low-cost quadrotor[J]. Aerospace Science and Technology,2020, 96:105551.
[14] JATEGAONKAR R. Flight vehicle system identification:A time domain methodology[M].Reston:AIAA,2006:335-374
[15] KLEIN V,MORELLI E.Aircraft system identification:Theory and practice[M]. Reston:AIAA, 2006:333-351.
[16] LU P, EYKEREN V L, KAMPEN V E,et al. Aircraft inertial measurement unit fault identification with application to real flight data[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(12):2467-2475.
[17] LU P L, EYKEREN V, VAN KAMPEN E,et al. Adaptive three-step Kalman filter for air data sensor fault detection and diagnosis[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3):590-604.
[18] WARTMANN J, WOLFRAM J,GESTWA M. Sensor fusion and flight path reconstruction of the ACT/FHS rotorcraft[J]. CEAS Aeronautical Journal, 2015, 6(4):529-539.
[19] TISCHLER M,REMPLE R K. Aircraft and rotorcraft system identification:Engineering methods with flight-test examples[M]. Reston:AIAA, 2006:119-144.
[20] SETU S, ABHISHEK A,VENKATESAN C. Time-domain system identification of helicopters using nonlinear acceleration and jerk prediction model[J]. Journal of Aircraft, 2019, 56(3):1272-1280.
[21] GRAUER J A,BOUCHER M. Aircraft system identification from multisine inputs and frequency responses[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[22] GRAUER J A, BOUCHER M. System identification of flexible aircraft:Lessons learned from the X-56A phase 1 flight tests[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[23] NIJBOER J, ARMANINI S F, KARASEK M,et al. Longitudinal grey-box model identification of a tailless flapping-wing MAV based on free-flight data[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[24] LICHOTA P, SZULCZYK J, TISCHLER M B,et al.Frequency responses identification from multi-axis maneuver with simultaneous multisine inputs[J].Journal of Guidance, Control, and Dynamics, 2019, 42(11):2550-2556.
[25] MORELLI E A, GRAUER J A. Practical aspects of frequency-domain approaches for aircraft system identification[J]. Journal of Aircraft,2020:1-25.
[26] TOBIAS L,TISCHLER M B. Full-envelope stitched simulation model of quadcopter using STITCH[C]//AHS International 74th Annual Forum & Technology Display. Fort Worth:American Helicopter Society, 2018.
[27] GONG A, SANDERS F C, HESS R A,et al. System identification and full flight-envelope model stitching of a package-delivery octocopter[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
文章导航

/