地球同步轨道薄膜太阳帆的姿态轨道控制方法

  • 武云丽 ,
  • 赵天一 ,
  • 左华平 ,
  • 孟斌
展开
  • 1. 北京控制工程研究所, 北京 100190;
    2. 空间智能控制技术重点实验室, 北京 100190;
    3. 哈尔滨工业大学 控制理论与制导技术中心, 哈尔滨 150001;
    4. 兰州空间技术物理研究所 真空技术与物理重点实验室, 兰州 730000

收稿日期: 2020-05-26

  修回日期: 2020-05-29

  网络出版日期: 2020-06-12

基金资助

国家重点研发计划(2018YFA0703800);空间智能控制技术重点实验室基金(ZDSYS-2018-04)

Orbit and attitude control design for film solar sailcrafts on geosynchronous orbit

  • WU Yunli ,
  • ZHAO Tianyi ,
  • ZUO Huaping ,
  • MENG Bin
Expand
  • 1. Beijing Institute of Control Engineering, Beijing 100190, China;
    2. Key Laboratory of Space Intelligent Control Technology, Beijing 100190, China;
    3. Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China;
    4. Key Laboratory of Vacuum Technology and Physics, Lanzhou Institute of Space Technical Physics, Lanzhou 730000, China

Received date: 2020-05-26

  Revised date: 2020-05-29

  Online published: 2020-06-12

Supported by

National Key Research and Development Program (2018YFA0703800); The Foundation of Key Laboratory of Space Intelligent Control Technology (ZDSYS-2018-04)

摘要

薄膜太阳帆(FSS)是集推进、发电和姿轨控功能于一体化的超大型挠性太阳帆式航天器,通过调整薄膜反射率产生可变推力和力矩,实现其姿态和轨道运动控制。结合薄膜太阳帆在地球同步轨道运行时的受力特性进行了轨道漂移分析。通过建立薄膜太阳帆动力学模型及受力模型,提出了调整帆面角度轨道修正方法以及基于薄膜光压力矩角动量卸载的长期在轨对日定向面内双轴动量轮稳定控制方法。通过系统仿真验证表明所提的轨道修正和对日定向控制方法是合理有效的,可使薄膜太阳帆长期在定点位置维持对日定向。

本文引用格式

武云丽 , 赵天一 , 左华平 , 孟斌 . 地球同步轨道薄膜太阳帆的姿态轨道控制方法[J]. 航空学报, 2020 , 41(S2) : 724291 -724291 . DOI: 10.7527/S1000-6893.2020.24291

Abstract

The film solar sailcraft (FSS) with variable reflectivity is a huge flexible spacecraft capable of propulsion, electric power generation, and attitude and orbit control. The FSS can generate force and torque for attitude and orbit control via varying film reflectivity. In this paper, the orbit drifting motion is analyzed according to the force characteristics of the FSS on the geostationary orbit, and the dynamics model and force and torque model of variable film reflectivity for the FSS are built respectively. Based on the proposed models, an orbit correction method is presented to change the attitudes of the FSS. A stable and reliable attitude control method with double momentum wheels fixed in the plane of the FSS is also proposed. The momentum accumulation of the wheels for attitude control can be unloaded by the solar torque produced from variable film reflectivity. The mathematical simulations show that the proposed methods are reasonable and fit for engineering applications, enabling the FSS to work at a fixed longitude position over a long period of time.

参考文献

[1] 胡海岩. 太阳帆航天器的关键技术[J]. 深空探测学报, 2016, 3(4):334-344. HU H Y. Key technologies of solar sail spacecraft[J]. Journal of Deep Space Exploration, 2016, 3(4):334-344(in Chinese).
[2] WIE B, ROITHMAYR C M. Attitude and orbit control of a very large geostationary solar power satellite[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):439-451.
[3] SASAKI S, TANAKA K, HIGUCHI K, et al. A new concept of solar power satellite:Tethered-SPS[J]. Acta Astronautica, 2006, 60(3):153-165.
[4] MORI M, KAGAWA H, SAITO Y. Summary of studies on space solar power systems of Japan Aerospace Exploration Agency (JAXA)[J]. Acta Astronautica, 2006, 59(1):132-138.
[5] 杨阳, 张逸群, 王东旭, 等. SSPS太阳能收集系统研究现状及发展趋势[J]. 宇航学报, 2016, 37(1):21-28. YANG Y, ZHANG Y Q, WANG D X, et al. Status and trend of the solar energy collection system for space solar power station[J]. Journal of Astronautics, 2016, 37(1):21-28(in Chinese).
[6] BONG W. Solar sail attitude control and dynamics, Part 1[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4):526-535
[7] BONG W, DAVID M. Micro PPT-based secondary/backup ACS for a 160 m, 450 kg solar sail spacecraft[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA, 2005:1-14.
[8] BOLLE A, CIRCI C. Solar sail attitude control through in-plane moving masses[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008, 222:81
[9] JUAN O, BEN D, BRANDON S, et al. Solar sail attitude control system for the NASA near earth asteroid scout mission[C]//The 4th International Symposium on Solar Sailing. Kyoto:[s.n.], 2017:1-8.
[10] 钱航, 郑建华, 于锡峥, 等. 太阳帆航天器悬浮轨道动力学与控制[J]. 空间科学学报, 2013, 33(4):458-464. QIAN H, ZHENG J H, YU X Z, et al. Dynamics and control of displaced orbits for solar sail spacecraft[J]. Chinese Journal of Space Science, 2013, 33(4):458-464(in Chinese).
[11] 张楷田, 楼张鹏, 王永, 等. 混合小推力航天器日心悬浮轨道保持控制[J]. 航空学报, 2015, 36(12):3910-3918. ZHANG K T, LOU Z P, WANG Y, et al. Station-keeping control of spacecraft using hybrid low-thrust propulsion in heliocentric displaced orbits[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3910-3918(in Chinese).
[12] 陈弈澄, 齐瑞云, 张嘉芮, 等. 混合小推力航天器轨道保持高性能滑模控制[J]. 航空学报, 2019, 40(7):322827. CHEN Y C, QI R Y, ZHANG J R, et al. High-performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322827(in Chinese).
[13] 龚胜平, 李俊峰, 宝音贺西, 等. 太阳帆绕地球周期轨道研究[J]. 宇航学报, 2012, 33(5):527-532. GONG S P, LI J F, BAO Y H X, et al. Solar sail periodical orbits around earth[J]. Journal of Astronautics, 2012, 33(5):527-532(in Chinese).
[14] 张军徽, 佟安, 武娜, 等. 太阳帆航天器在绕地轨道中的热诱发振动[J]. 航空学报, 2019, 40(11):223135. ZHANG J H, TONG A, WU N, et al. Thermally-induced vibration of a solar sail in earth orbit[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):223135(in Chinese).
[15] 张洋. 太阳帆航天器刚柔耦合姿态控制与轨迹优化研究[D]. 合肥:中国科学技术大学, 2010. ZHANG Y. Research on rigid-flexible attitude control and trajectory optimization of solar sail spacecraft[D]. Hefei:University of Science and Technology of China, 2010(in Chinese).
[16] 朱敏. 太阳帆航天器动力学与控制研究[D]. 合肥:中国科学技术大学, 2016. ZHU M. Research on dynamics and control of solar sail spacecraft[D]. Hefei:University of Science and Technology of China, 2016(in Chinese).
[17] 崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解[J]. 航空学报, 2010, 31(8):1565-1571. CUI N G, LIU J F, RONG S Y. Solar sail spacecraft dynamic modeling and solving[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1565-1571(in Chinese).
[18] 蒋建平, 李东旭. 带太阳帆板航天器刚柔耦合动力学研究[J]. 航空学报, 2006, 27(3):418-422. JIANG J P, LI D X. Research on rigid flexible coupling dynamics of spacecraft with solar panel[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):418-422(in Chinese).
[19] 刘玉亮, 邬树楠, 刘家夫, 等. 空间太阳能电站重力姿态-轨道-结构耦合特性[J]. 航空学报, 2017, 38(12):154-165. LIU Y L, WU S N, LIU J F, et al. Gravitational attitude-orbit-structure coupling of space solar power station[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):154-165(in Chinese).
[20] 刘玉亮, 邬树楠, 张开明, 等. 重力姿轨耦合效应引起的太阳能电站轨道共振[J]. 航空学报, 2018, 39(12):322194. LIU Y L, WU S N, ZHANG K M, et al. Resonance in the orbital motion of solar power station due to gravitational orbit attitude coupling[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322194(in Chinese).
[21] TSUDA Y, MORI O, FUNASE R, et al. Flight status of IKAROS deep space solar sail demonstrator[J]. Acta Astronautica, 2011, 69(9):833-840(in Chinese).
文章导航

/