基于微分对策的临近空间飞行器机动突防策略

  • 王雨琪 ,
  • 宁国栋 ,
  • 王晓峰 ,
  • 郝明瑞 ,
  • 王江华
展开
  • 北京机电工程研究所, 北京 100074

收稿日期: 2020-04-25

  修回日期: 2020-05-18

  网络出版日期: 2020-06-12

基金资助

军委科技委前沿创新项目

Maneuver penetration strategy of near space vehicle based on differential game

  • WANG Yuqi ,
  • NING Guodong ,
  • WANG Xiaofeng ,
  • HAO Mingrui ,
  • WANG Jianghua
Expand
  • Beijing Electro-Mechanical Engineering Institute, Beijing 100074, China

Received date: 2020-04-25

  Revised date: 2020-05-18

  Online published: 2020-06-12

Supported by

Frontier Innovation Project of the Science and Technology Commission of Central Military Commission of People's Republic of China

摘要

针对飞行器机动突防问题,基于微分对策理论对飞行器在攻防对抗中制导阶段的机动突防策略进行设计与分析。首先将攻防对抗问题转化为二人零和博弈问题,并设计了二次型目标函数;其次,考虑到飞行器计算能力不足的问题,采取了适当假设以得到博弈问题的解析解,便于实际应用;最后对该机动突防策略进行了仿真验证,结果表明在攻防对抗中制导阶段,飞行器采用微分对策制导律,相较于正弦机动不仅减少自身54.3%的能量消耗,而且增加了拦截器58.6%的能量消耗,将显著增加飞行器末制导段对抗突防能力。

本文引用格式

王雨琪 , 宁国栋 , 王晓峰 , 郝明瑞 , 王江华 . 基于微分对策的临近空间飞行器机动突防策略[J]. 航空学报, 2020 , 41(S2) : 724276 -724276 . DOI: 10.7527/S1000-6893.2020.24276

Abstract

Aiming at the maneuvering penetration problem of near space vehicles, we design and analyze the maneuvering penetration strategy of the vehicles during midcourse guidance based on the differential game theory. First, the attack-defense confrontation problem is transformed into a two-person zero-sum game problem, and a quadratic objective function is designed. Secondly, considering the problem of insufficient computing power of the vehicle, we take reasonable assumptions to obtain the analytical solution of the game problem for convenient practical applications. Finally, the maneuvering penetration strategy based on the differential game theory is simulated and verified. The results show that compared with the sinusoidal maneuver during the midcourse guidance, this strategy not only reduces 54.3% of energy consumption by the vehicle, but increases 58.6% of the energy consumption by the interceptor, therefore significantly raising the penetration ability of the vehicle during terminal guidance.

参考文献

[1] 高雁翎, 张保庆. 2017年世界弹道导弹防御发展分析[J]. 战术导弹技术, 2018(1):42-46. GAO Y L, ZHANG B Q. Analysis of ballistic missile defense development in 2017[J]. Tactical Missile Technology, 2018(1):42-46(in Chinese).
[2] 王亚帆, 周韬, 陈万春, 等. 基于脱靶量级数解的最优机动突防策略[J]. 北京航空航天大学学报, 2020, 46(1):159-169. WANG Y F, ZHOU T, CHEN W C, et al. Optimal maneuver penetration strategy based on power series solution of miss distance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1):159-169(in Chinese).
[3] 呼卫军, 周军. 临近空间飞行器拦截策略与拦截武器能力分析[J]. 现代防御技术, 2012, 40(1):11-15. HU W J, ZHOU J. Analysis of the interception strategy of the near space vehicle and capability of the interception weapon[J]. Modern Defence Technology, 2012, 40(1):11-15(in Chinese).
[4] 张涛, 李炯, 王华吉, 等. 临近空间动能拦截器神经反演姿态控制器设计[J]. 航空学报, 2018, 39(8):321953. ZHANG T, LI J, WANG H J. Attitude control of near space kinetic kill vehicle based on neural network backtepping control[J]. Aeronautica et Astronautica Sinica, 2018, 39(8):321953(in Chinese).
[5] 周聪, 闫晓东, 唐硕. 圆弧变系数显式拦截中制导[J]. 航空学报, 2019, 40(10):323122. ZHOU C, YAN X D, TANG S. Explicit guidance law with varying gain and circular prediction for mid-course interception[J]. Aeronautica et Astronautica Sinica, 2019, 40(10):323122(in Chinese).
[6] 迟泽晨, 李长文, 王健. 临近空间导弹最优机动突防控制策略研究[C]//第二届中国空天安全会议论文集, 2017:134-139. CHI Z C, LI C W, WANG J. Analysis of optimal evasive maneuvers control in near-space[C]//Proceedings of the 2nd China Air and Space Security Conference, 2017:134-139(in Chinese).
[7] 郑玉航, 于海燕, 孙鹏. 导弹突防策略与措施研究[J]. 国防技术基础, 2002(5):46-48. ZHENG Y H,YU H Y,SUN P. Research on missile penetration strategy and measures[J]. Technology Foundation of National Defence, 2002(5):46-48(in Chinese).
[8] ZARCHAN P. Proportional navigation and weaving targets[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5):969-974.
[9] ZARCHAN P. Tactical andstrategic missile guidance[M]. Reston:AIAA, 2012:342-351.
[10] 雍恩米, 唐国金, 罗亚中. 弹道导弹中段机动突防制导问题的仿真研究[J]. 导弹与航天运载技术, 2005(4):13-18. YONG E M, TANG G J, LUO Y Z. Research on maneuvering penrtration guidance law of ballistic misssile in middle-course flight by simulation method[J]. Missiles and Space Vehicles, 2005(4):13-18(in Chinese).
[11] SAILARANTA T, SILTAVUORI A, PANKKONEN A. Simple missile models against high-g barrel roll maneuver[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011.
[12] 韩楠, 罗建军, 柴源. 多颗微小卫星接管失效航天器姿态运动的微分博弈学习控制[J]. 中国科学:信息科学, 2020, 50(4):588-602. HAN N, LUO J J, CHAI Y. Differential game learning approach for multiple microsatellites takeover of the attitude movement of failed spacecraft[J]. SCIENTIA SINICA Informationis, 2020, 50(4):588-602(in Chinese).
[13] 张士熊, 刘新学, 李斌, 等. 基于微分对策的拦截末段突防导弹机动突防制导律研究[J]. 导弹与航天运载技术, 2015(2):81-84. ZHANG S X, LIU X X, LI B, et al. Study on maneuver penetration guidance law of ballistic missile based on differential games in the terminal of interception[J]. Missiles and Space Vehicles, 2015(2):81-84(in Chinese).
[14] TAHK M, RYU H, KIM J. An iterative numerical method for a class of quantitative pursuit-evasion games[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998.
[15] SHINAR J, STEINBERG D. Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J]. Journal of Aircraft, 1977, 14(8):795-802.
[16] 郭志强, 孙启龙, 周绍磊, 等. 主动防御飞行器的范数型微分对策制导律[J]. 北京航空航天大学学报, 2019, 45(9):1787-1796. GUO Z Q, SUN Q L, ZHOU S L, et al. Norm differential game guidance law for active defense aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9):1787-1796(in Chinese).
[17] GARCIA E, CASBEER D W, PACHTER M. Design and analysis of state-feedback optimal strategies for the differential game of active defense[J]. IEEE Transactions on Automatic Control, 2018, 64(2):553-568.
[18] LIANG L, DENG F, PENG Z, et al. A differential game for cooperative target defense[J]. Automatica, 2019, 102:58-71.
[19] LIANG H, WANG J Y, WANG Y H, et al. Optimal guid-ance against active defense ballistic missiles via differen-tial game strategies[J]. Chinese Journal of Aeronautics, 2020,33(3):978-989.
[20] 孙守明, 汤国建, 周伯昭. 基于微分对策的弹道导弹机动突防研究[J]. 弹箭与制导学报, 2010, 30(4):65-68. SUN S M, TANG G J, ZHOU B S. Research on penetration maneuver of ballistic missle based on differential game[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(4):65-68(in Chinese).
[21] 泮斌峰, 唐硕. 吸气式空天飞行器闭环上升制导研究[J]. 飞行力学, 2010, 28(6):48-51. PAN B F, TANG S. Identification of flight control system based on support vector machine[J]. Flight Dynamics, 2010, 28(6):48-51(in Chinese).
[22] 吴其昌, 李彬, 李君, 等. 基于深度神经网络的无限时域型航天器追逃策略求解[J]. 航天控制, 2019, 37(6):13-18. WU Q C, LI B, LI J, et al. Solution of infinite time domain spacecraft pursuit strategy based on deep neural network[J]. Aerospace Control, 2019, 37(6):13-18(in Chinese)
[23] 吴其昌, 张洪波. 基于生存型微分对策的航天器追逃策略及数值求解[J]. 控制与信息技术, 2019(4):39-43. WU Q C, ZHANG H B. Spacecraft pursuit strategy and numerical solution based on survival differential strategy[J]. Control and Information Technology, 2019(4):39-43(in Chinese).
[24] 陈燕妮, 刘春生, 孙景亮. 基于自适应最优控制的有限时间微分对策制导律[J]. 控制理论与应用, 2019, 36(6):877-884. CHEN Y N, LIU C S, SUN J L. Finite-time differential guidance law based on adaptive optimal control[J]. Control Theory & Applications, 2019, 36(6):877-884(in Chinese).
[25] ODEKUNLE A, GAO W, DAVARI M, et al. Reinforcement learning and non-zero-sum game output regulation for multi-player linear uncertain systems[J]. Automatica, 2020, 112:108672.
[26] WANG M, WANG L, YUE T. An application of continuous deep reinforcement learning approach to pursuit-evasion differential Game[C]//2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway:IEEE Press, 2019:1150-1156.
[27] 刘念. 不确定性系统的微分对策求解及其在飞行器控制中的应用[D]. 南京:南京航空航天大学, 2017:8-10. LIU N. Solution for differential game of uncertain systems and its application in control of aircrafts[D]. Nanjing:Nanjing University of Aeronautics And Astronautics, 2017:8-10(in Chinese)
[28] FARUQI F A. Differential game theory with applications to missiles and autonomous systems guidance[M]. Londong:John Wiley & Sons, 2017:84-96.
文章导航

/