Fuel cell power system is a long endurance power scheme for electric Unmanned Aerial Vehicles (UAVs), and the control technology of fuel cells is critical to the reliability and efficiency of the power system. For small air cooling open cathode proton exchange membrane fuel cells used in UAVs, a feedforward fuzzy PID method for stack temperature control and an ampere-hour integration threshold method for membrane water management are proposed. The proposed methods consider the overall control process of the fuel cells for engineering applications, taking into account simultaneously the fuel cell temperature control and water management to achieve efficient control of the entire fuel cell system. Through the developed test platform, the proposed control technology is tested, verified, and compared with the existing temperature control and water management methods. The results show that the proposed feedforward fuzzy PID, similar to the traditional fuzzy PID, can reach the target temperature faster than the PID method during the long time startup process of the fuel cell, reducing the response time by 7%. When the fuel cell current continues to decrease, the proposed feedforward fuzzy PID, with its overshoot being 34% of that of the PID method and 43% of the traditional fuzzy PID method, exhibits an obvious advantage in inhibiting the overshoot. The proposed ampere-hour integration threshold control method for water management can not only prevent the flooding failure, but improve the fuel economy, saving about 15% of hydrogen in the test compared with the existing water management method.
[1] 黄俊,杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[2] 李开省. 电动飞机技术的发展研究[J]. 航空科学技术, 2019,30(1):1-7. LI K S. Research on the development of electric aircraft technology[J]. Aeronautical Science & Technology, 2019, 30(1):1-7(in Chinese).
[3] GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles:Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33):21311-21333.
[4] 刘莉, 曹潇, 张晓辉,等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020,41(3):623474. LIU L, CAO X, ZHANG X H, et al. Review of development on light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):623474(in Chinese).
[5] GONG A, VERSTRAETE D. Design and bench test of a fuel-cell/battery hybrid UAV propulsion system using metal hybrid hydrogen storage:AIAA-2017-4867[R]. Reston:AIAA, 2017.
[6] 杨慧君, 邓卫国, 关世义, 等. 新型长航时燃料电池技术无人机航空系统-XFC无人机[J]. 飞航导弹, 2014(7):32-38. YANG H J, DENG W G, GUAN S Y, et al. Novel long-endurance fuel cell tactical unmanned aerial system-XFC UAV[J]. Aerodynamic Missile Journal, 2014(7):32-38(in Chinese).
[7] PAN Z F, AN L, WEN C Y. Recent advances in fuel cells based propulsion system for unmanned aerial vehicles[J]. Applied Energy, 2019, 240:473-485.
[8] LEI T, YANG Z, LIN Z, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(6):1488-1503.
[9] 张晓辉, 刘莉, 戴月领, 等. 燃料电池无人机动力系统方案设计与试验[J]. 航空学报, 2018, 39(8):221874. ZHANG X H, LIU L, DAI Y L, et al. Design and test of propulsion system for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):221874(in Chinese).
[10] 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7):222793. ZHANG X H, LIU L, DAI Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):222793(in Chinese).
[11] MAHJOUBI C, OLIVIER J C, SKANDER-MUSTAPHA S, et al. An improved thermal control of open cathode proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(22):11332-11345.
[12] VERSTRAETE D, GONG A, LU D D, et al. Experimental investigation of the role of the battery in the Aero-Stack hybrid, fuel-cell-based propulsion system for small unmanned aircraft systems[J]. International Journal of Hydrogen Energy, 2015, 40(3):1598-1606.
[13] VERSTRAETE D, LEHMKUEHLER K, GONG A, et al. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft[J]. Journal of Power Sources, 2014, 250:204-211.
[14] 刘莉, 杜孟尧, 张晓辉, 等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese).
[15] HU P, CAO G Y, ZHU X J, et al. Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(17):9110-9123.
[16] OU K, YUAN W W, CHOI M, et al. Performance increase for an open-cathode PEM fuel cell with humidity and temperature control[J]. International Journal of Hydrogen Energy, 2017,42(50):29852-29862.
[17] 谢雨岑, 邹见效, 彭超. 基于变论域模糊增量理论的质子交换膜燃料电池控制[J]. 控制理论与应用, 2019, 36(3):428-435. XIE Y C, ZOU J X, PENG C. Temperature control of PEMFC system based on variable universe fuzzy incremental theory[J]. Control Theory and Applications, 2019, 36(3):428-435(in Chinese).
[18] HAO L X, YU H M, HOU J B, et al. Transient behavior of water generation in a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 177(2):404-411.
[19] OU K, WANG Y X, LI Z Z, et al. Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(35):11686-11695.
[20] 王斌锐, 金英连, 褚磊民, 等. 空冷燃料电池最佳温度及模糊增量PID控制[J]. 中国电机工程学报, 2009, 29(8):109-114. WANG B R, JIN Y L, CHU L M, et al. Temperature optimization and fuzzy incremental PID control for air-breathing proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2009, 29(8):101-114(in Chinese).
[21] 张雪霞, 蒋宇, 孙腾飞, 等. 质子交换膜燃料电池水淹和膜干故障诊断研究综述[J]. 西南交通大学学报,2020, 55(4):828-838, 864. ZHANG X X, JIANG Y, SUN T F, et al. Review on diagnosis for flooding and drying in exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(4):828-838, 864(in Chinese).
[22] STRAHL S, RAMON C. Temperature control of open-cathode PEM fuel cells[J]. IFAC-PapersOnLine, 2017, 50(1):11088-11093.
[23] 张国良. 模糊控制及其MATLAB应用[M]. 西安:西安交通大学出版社, 2002. ZHANG G L. Fuzzy control and application in MATLAB[M]. Xi'an:Xi'an Jiaotong University Press, 2002(in Chinese).
[24] 廖常初. PID参数的意义与整定方法[J]. 自动化应用, 2010(5):27-32. LIAO C C. The meaning of PID control parameters and setting method[J]. Automation Application, 2010(5):27-32(in Chinese).