论文

基于动力学RRT*的自由漂浮空间机器人轨迹规划

  • 葛佳昊 ,
  • 刘莉 ,
  • 董欣心 ,
  • 田维勇 ,
  • 陆天和
展开
  • 北京理工大学 宇航学院, 北京 100081

收稿日期: 2020-02-15

  修回日期: 2020-03-08

  网络出版日期: 2020-06-12

Trajectory planning for free floating space robots based on kinodynamic RRT*

  • GE Jiahao ,
  • LIU Li ,
  • DONG Xinxin ,
  • TIAN Weiyong ,
  • LU Tianhe
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2020-02-15

  Revised date: 2020-03-08

  Online published: 2020-06-12

摘要

针对自由漂浮空间机器人(FFSR)轨迹规划问题,提出了一种基于动力学RRT*算法的FFSR轨迹规划方法。首先,建立了FFSR的运动学与动力学模型,将系统模型伪线性重构为状态空间模型,并设计了考虑位姿调整时长和能量消耗的加权目标函数;然后,针对机械手初末位置间的障碍,简化避障方法,提出了机械臂避障与机械手避障两层次避障策略,提高碰撞检测效率;接着,给出了多体系统的动力学RRT*逼近最优轨迹的方法;最后,为验证算法有效性并不失一般性,选取平面2连杆FFSR模型进行数值仿真并用经典RRT*算法和高斯伪谱法与之对比。仿真结果表明,该方法能够以较快的速度生成可行的机器人移动轨迹。

本文引用格式

葛佳昊 , 刘莉 , 董欣心 , 田维勇 , 陆天和 . 基于动力学RRT*的自由漂浮空间机器人轨迹规划[J]. 航空学报, 2021 , 42(1) : 523877 -523877 . DOI: 10.7527/S1000-6893.2020.23877

Abstract

Aiming at the problem of trajectory planning for the Free Floating Space Robot (FFSR), this paper proposes an FFSR trajectory planning method based on the kinodynamic RRT* algorithm. The kinematics and dynamics model of the FFSR is first established with the pseudo linear system model reconstructed into the state space model and a weighted objective function designed considering both time and energy consumption of posture adjustment. Secondly, considering the obstacles between the initial and final positions of the manipulator, we propose a simplified obstacle avoidance method, formulating a two-level obstacle avoidance strategy for robotic arms and the manipulator to improve the collision detection efficiency. The kinodynamic RRT* approach to the optimal trajectory is presented. Finally, to verify the effectiveness of the algorithm without generality loss, the 2-degree of freedom FFSR model is selected for numerical simulation. The classic RRT* algorithm and Gauss pseudo-spectral method are used for comparison. The simulation results show that the method can generate feasible robot trajectories with fewer iterations.

参考文献

[1] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese).
[2] SEDDAOUI A, SAAJ C M. Collision-free optimal trajectory for a controlled floating space robot[C]//20th Annual Conference Towards Autonomous Robotic Systems, TAROS 2019. Cham:Springer, 2019:248-260.
[3] XU W, LIANG B, XU Y. Survey of modeling, planning, and ground verification of space robotic systems[J]. Acta Astronautica, 2011, 68(11-12):1629-1649.
[4] VAFA Z, DUBOWSKY S. The kinematics and dynamics of space manipulators:The virtual manipulator approach[J]. International Journal of Robotics Research, 1990, 9(4):3-21.
[5] DUBOWSKY S, PAPADOPOULOS E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):531-543.
[6] LIANG B, XU Y, BERGERMAN M, et al. Dynamically equivalent manipulator for space manipulator system[C]//Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems Innovative Robotics for Real-World Applications IROS'97. Piscataway:IEEE Press, 1997:1493-1499.
[7] 介党阳, 陆浩然, 吴晗玲, 等. 空间大型机械臂系统载运轨迹优化方法[J]. 航空学报, 2018, 39(S1):722352. JIE D Y, LU H R, WU H L, et al. Transporting trajectory optimization method for large space manipulator system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1):722352(in Chinese).
[8] WANG M, LUO J, WALTER U. Trajectory planning of free-floating space robot using particle swarm optimization (PSO)[J]. Acta Astronautica, 2015, 112:77-88.
[9] WANG M, LUO J, YUAN J, et al. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization[J]. Acta Astronautica, 2018, 146:259-272.
[10] XU W, LIU Y, LIANG B, et al. Non-holonomic path planning of a free-floating space robotic system using genetic algorithms[J]. Advanced Robotics, 2012, 22(4):451-476.
[11] 姚其家, 戈新生. 基于混合优化策略的柔性空间机器人姿态运动规划[C]//第十届全国多体动力学与控制暨第五届全国航天动力学与控制学术会议. 北京:中国力学学会, 2017:139-145. YAO Q J, GE X S. Attitude motion planning of flexible space robot based on hybrid optimization strategy[C]//The 10th National Conference on Multibody Dynamics and Control and the 5th National Conference on Aerospace Dynamics and Control. Beijing:Chinese Society of Mechanics, 2017:139-145(in Chinese).
[12] WANG M, LUO J, FANG J, et al. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm[J]. Advances in Space Research, 2018, 61(6):1525-1536.
[13] 黄兴宏, 贾英宏, 徐世杰, 等. 全程恒定基座姿态零扰动的空间机械臂轨迹规划[J]. 北京航空航天大学学报, 2016, 43(3):488-496. HUANG X H, JIA Y H, XU S J, et al. Trajectory planning of a space manipulator with constant zero disturbance to base attitude[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 43(3):488-496(in Chinese).
[14] 戈新生, 陈凯捷. 自由漂浮空间机器人路径优化的Legendre伪谱法[J]. 力学学报, 2016, 48(4):823-831. GE X S, CHEN K J. Path planning of free floating space robot using Legendre pseudospectral method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):823-831(in Chinese).
[15] 曾祥鑫. 自由漂浮空间机器人路径规划及控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018:40-50. ZENG X X. Research on path planning and control method for free-floating space robot[D]. Harbin:Harbin Institute of Technology, 2018:40-50(in Chinese).
[16] BENEVIDES J, GRASSI V JR. Path planning with collision avoidance for free-floating manipulators:A RRT-based approach[C]//Brazilian Conference on Robotics & Latin American Robotics Symposium. Cham:Springer, 2016:103-119.
[17] XU W F, YAN L, HU Z H, et al. Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target[J]. Chinese Journal of Aeronautics, 2019, 32(9):2151-2163.
[18] 贾庆轩, 陈钢, 孙汉旭, 等. 基于A*算法的空间机械臂避障路径规划[J]. 机械工程学报, 2010, 46(13):109-115. JIA Q X, CHEN G, SUN H X, et al. Path planning for space manipulator to avoid obstacle based on A* algorithm[J]. Chinese Journal of Mechanical Engineering, 2010, 46(13):109-115(in Chinese).
[19] 阳涵疆, 李立君, 高自成. 基于关节构形空间的混联采摘机械臂避障路径规划[J]. 农业工程学报, 2017, 33(4):55-62. YANG H J, LI L J, GAO Z C. Obstacle avoidance path planning of hybrid harvesting manipulator based on joint configuration space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4):55-62(in Chinese).
[20] 邹宇星, 李立君, 高自成. 基于改进PRM的采摘机器人机械臂避障路径规划[J]. 传感器与微系统, 2019, 38(1):52-56. ZOU Y X, LI L J, GAO Z C. Obstacle avoidance path planning for harvesting robot arm based on improved PRM[J]. Transducer and Microsystem Technologies, 2019, 38(1):52-56(in Chinese).
[21] 谢碧云, 赵京, 刘宇. 基于快速扩展随机树的7R机械臂避障达点运动规划[J]. 机械工程学报, 2012, 48(3):67-73. XIE B Y, ZHAO J, LIU Y. Motion planning of reaching point movements for 7R robotic manipulators in obstacle environment based on rapidly-exploring random tree algorithm[J]. Chinese Journal of Mechanical Engineering, 2012, 48(3):67-73(in Chinese).
[22] TAYFUN Ç. State-Dependent Riccati Equation (SDRE) control:A survey[C]//Proceedings of the 17th World Congress of the International Federation of Automatic Control. Seoul:IFAC, 2008:3761-3775.
[23] WEBB D, BERG J. Kinodynamic RRT*:Asymptotically optimal motion planning for robots with linear dynamics[C]//2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013:5054-5061.
[24] RYBUS T. Obstacle avoidance in space robotics:review of major challenges and proposed solutions[J]. Progress in Aerospace Sciences, 2018, 101:376-421.
文章导航

/