可重复使用飞行器一般采用大升阻比气动外形,再入轨迹三维剖面规划方法可充分发挥这类飞行器固有的机动能力。计算量大是制约三维剖面规划应用的难题,为提高计算效率,提出了一种基于凸优化的再入轨迹三维剖面规划方法。首先,分析运动方程特性,利用定义新的控制变量、约束松弛、连续线性化等技术,将原始非凸的三维剖面规划问题转化为一个凸优化问题。其次,将指令反解步骤嵌入至序列凸化算法中,通过迭代求解凸优化子问题,获得原问题的可行解。数值仿真结果表明所提方法具有较高的求解精度和确定的收敛性质,飞行器的机动能力得到充分发挥;与伪谱法的结果对比表明凸优化方法在轨迹规划问题上具有更高的求解效率。
The reusable launch vehicle has an aerodynamic shape with a high lift-drag ratio. The entry trajectory planning based on the 3-D profile can take full advantage of the inherent maneuvering ability of the vehicle. However, the heavy computational burden restricts the application of the 3-D profile planning method. To improve the computational efficiency, this paper proposes an entry trajectory planning method based on 3-D profile via convex optimization. The characteristics of dynamic equations are first analyzed, and the original non-convex trajectory planning problem is transformed into a convex optimization problem using convexification techniques such as the definition of new controls, constraint relaxation, and successive linearization. The command solution step is then inserted into the sequential convex optimization algorithm proposed in this paper. A feasible solution is obtained by solving iteratively the convex sub-problem. In the simulation experiments, the high solution accuracy and the determined convergence of the proposed method are demonstrated, and fully utilizing the maneuvering ability. Compared with the pseudospectral method, the proposed method has a significant advantage in computational efficiency.
[1] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述综述[J]. 航空学报, 2020, 41(1):023377. ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023377(in Chinese).
[2] BHARADWAJ S, RAO A V, MEASE K D. Entry trajectory tracking law via feedback linearization[J]. Journal of Guidance, Control and Dynamics, 1998, 21(5):726-732.
[3] MEASE K D, TEUFEL P, SCHOENENBERGER H, et al. Reentry trajectory planning for a reusable launch vehicle[C]//Guidance, Navigation, and Control and Co-located Conferences, 1999.
[4] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control and Dynamics, 2002, 25(2):257-266.
[5] ZHANG Y L, CHEN K J, LIU L H, et al. Entry trajectory planning based on three-dimensional acceleration profile guidance[J]. Aerospace Science and Technology, 2016, 48:131-139.
[6] HE R Z, ZHANG Y L, LIU L H, et al. Feasible footprint generation with uncertainty effects[J]. Proceedings of the Institution of Mecharnical Engineers Part G:Journal of Aerospace Engineering, 2019, 233(1):138-150.
[7] SHEN Z J, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control and Dynamics, 2003, 26(1):111-121.
[8] LU P, BRUNNER C W, STACHOWIAK S J, et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control and Dynamics, 2017, 40(2):230-247.
[9] LIU X F, SHEN Z J. Rapid smooth entry trajectory planning for high lift/drag hypersonic glide vehicles[J]. Journal of Optimization Theory and Applications, 2016, 168:917-943.
[10] 呼卫军,卢青,常晶,等. 特征趋势分区Gauss伪谱法解再入轨迹规划问题[J]. 航空学报,2015, 36(10):3338-3348. HU W J, LU Q, CHANG J, et al. Reentry trajectory planning method based on Gauss pseudospectral with characteristics of trend partition[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3338-3348(in Chinese).
[11] 宗群,田栢苓,窦立谦. 基于Gauss伪谱法的临近空间飞行器上升段轨迹优化[J]. 宇航学报,2010, 31(7):1775-1781. ZONG Q, TIAN B L, DOU L Q. Ascent phase trajectory optimization for near space vehicle based on Gauss pseudospectral method[J]. Journal of Astronautics, 2010, 37(7):1775-1781(in Chinese).
[12] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge:Oambridge University Press, 2004:7-11.
[13] 王祝,刘莉,龙腾,等. 基于罚函数序列凸规划的多无人机轨迹规划[J]. 航空学报,2016,37(10):3149-3158. WANG Z,LIU L,LONG T,et al. Trajectory planning for multi-UAVs using penalty sequential convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(10):3149-3158(in Chinese).
[14] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control and Dynamics. 2007, 30(5):1353-1366.
[15] SZMUK M, ACIKMESE B. Successive convexification for 6-DOF Mars rocket powered landing with free-final-time[C]//AIAA Guidance, Navigation and Control Conference. Reston:AIAA, 2018.
[16] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control and Dynamics, 2016, 39(2):227-241.
[17] WANG Z B, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control and Dynamics, 2017, 40(10):2603-2615.
[18] WANG Z B, GRANT M J. Autonomous entry guidance for hypersonic vehicles by convex optimization[J]. Journal of Spacecraft and Rockets, 2018, 55(4):993-1006.
[19] ZHOU X, ZHANG H B, HE R Z, et al. An improved solution method via the pole-transformation process for the maximum-crossrange problem[J/OL]. Proceedings of the Institution of Mecharnical Engineers Part G:Journal of Aerospace Engineering, 2020. https://doi.org/10.1177/0954410020914809.
[20] WANG Z B, GRANT M J. Improved sequential convex programming algorithms for entry trajectory optimization[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019:7-11.
[21] WANG J B, CUI N G, WEI C Z. Rapid trajectory optimization for hypersonic entry using a pseudospectral-convex algorithm[J]. Proceedings of the Institution of Mecharnical Engineers Part G:Journal of Aerospace Engineering, 2019, 233(14):5227-5238.
[22] ZHAO D J, SONG Z Y. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronautica, 2017, 137:60-69.
[23] PHILLIPS T H. A common aero vehicle model, description, and employment guide[EB/OL].[2019-10-25]. http://www.dtic.Mil/matris/sbir041/srch/af031a.doc.
[24] GRANT M J, BOYD S. CVX users' guide[EB/OL].[2020-10-25]. http://http://web.cvxr.com/cvx/doc/.