针对马赫数0~6的预冷涡轮+冲压组合多热力循环发动机的宽范围工作要求,提出了一种在马赫数2~6范围内流量系数为1.0的宽范围轴对称进气道变几何调节方案,通过中心锥与分流板的协同平移运动,可在满足涡轮与冲压两通道流量分配要求的同时,实现两通道压缩量的匹配调节。对起始半锥角分别为20°和13°的两种变几何进气道方案开展了设计与对比研究。结果表明:起始半锥角对最终方案设计影响最大,起始半锥角为13°的进气道方案较起始半锥角为20°的方案,冲压通道和涡轮通道在来流马赫数为6时临界总压恢复分别提高了16%和14%,最大迎风面积减小了12.4%,但中心锥和分流板平移调节距离分别增加84%和91%。
To satisfy the requirement of wide range operations for the pre-cooling turbojet + ramjet combined multiple thermodynamic cycle engine with Mach numbers from 0 to 6, a variable geometry adjustment scheme of an axisymmetric inlet with full flow capture ability within Mach number from 2 to 6 is proposed. The mass flow distribution and compression requirement between the turbojet and ramjet passages can be met simultaneously by moving the center cone and the splitter plate. In this paper, the scheme design and comparative study of two variable geometry inlets with initial half cone angles of 13° and 20° respectively are conducted. The results show that the initial half cone angle affects the design of the final scheme most. The inlet scheme with an initial half cone angle of 13° is advantageous over the one with an initial half cone angle of 20° in that the critical total pressure recovery in ramjet and turbojet channels increase by 16% and 14% respectively when the free stream Mach number is 6, and the maximum windward area decreases by 12.4%. However, the moving distances of the center cone and the splitter are increased by 84% and 91% respectively.
[1] 梅东牧, 林鹏, 王战. 吸气式空天飞机对TBCC动力的需求分析[J]. 燃气涡轮试验与研究, 2013, 26(6):12-14, 30. MEI D M, LIN P, WANG Z. Requirements for TBCC propulsion of air-breathing aerospace vehicle[J]. Gas Turbine Experiment and Research, 2013, 26(6):12-14, 30(in Chinese).
[2] CHOJNACKI K T, HAWK C W. An assessment of the rocket-based combined cycle propulsion system for earth-to-orbit transportation:AIAA-1993-0183[R]. Reston:AIAA, 1993.
[3] 吕翔, 何国强, 刘佩进. RBCC飞行器爬升段轨迹设计方法[J]. 航空学报, 2010, 31(7):1331-1337. LU X, HE G Q, LIU P J. Ascent trajectory design method for RBCC-powered vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1331-1337(in Chinese).
[4] BOSSARD J, THOMAS M. The influence of turbomachinery characteristics on air turbo rocket engine operation:AIAA-2000-3308[R]. Reston:AIAA, 2000.
[5] 马海波, 张蒙正. 预冷空气类动力系统发展历程浅析[J]. 火箭推进, 2019, 45(2):1-8. MA H B, ZHANG M Z. Preliminary analysis on development course of pre-cooling propulsion system[J].Journal of Rocket Propulsion, 2019, 45(2):1-8(in Chinese).
[6] 罗佳茂,杨顺华,张建强, 等.换热预冷发动机预冷特性和发动机性能数值研究[J].航空学报,2019,40(5):122652. LUO J M, YANG S H, ZHANG J Q, et al. Numerical investigation of pre-cooling characteristics of heat exchange pre-cooling engine and engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(5):122652(in Chinese).
[7] 周建兴, 张浩成, 高启滨, 等. 基于SABRE技术的高超声速预冷飞行器应用分析[J]. 推进技术, 2018, 39(10):2196-2206. ZHOU J X, ZHANG H C, GAO Q B, et al. Analysis of vehicle applications propelled by SABRE-based precooling hypersonic engine[J]. Journal of Propulsion Technology, 2018, 39(10):2196-2206(in Chinese).
[8] 范晓樯. 高超声速进气道的设计、计算与实验研究[D]. 长沙:国防科技大学, 2006:21-23. FAN X Q. Design method, numerical simulation and experimental research of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2006:21-23(in Chinese).
[9] CURRAN E T. Scramjet engines:The first forty years[J]. Journal of Propulsion and Power, 2001, 17(6):1138-1148.
[10] 张建强, 王振国, 李清廉. 空气深度预冷组合循环发动机吸气式模态建模及性能分析[J]. 国防科技大学学报, 2018, 40(1):1-9. ZHANG J Q, WAGN Z G, LI Q L. Modeling and performance analysis of deeply precooled combined cycle engine in the air-breathing mode[J]. Journal of National University of Defense Technology, 2018, 40(1):1-9(in Chinese).
[11] STEPHEN C, TIMOTHY R M, MASASHI M, et al. The SR-71 test bed aircraft:A facility for high-speed flight research:NASA TP 2000-209023[R].Washington, D.C.:NASA, 2000.
[12] COLVILLE J R, LEWIS M J. An aerodynamic redesign of the SR-71 inlet with applications to turbine combined cycle engine:AIAA-2004-3481[R]. Reston:AIAA, 2004.
[13] TOMARO R, WURTZLER K. High-speed configuration aerodynamics:SR-71 to SMV:AIAA-1999-3204[R]. Reston:AIAA, 1999.
[14] SAUNDERS J D, LINNE A A. Status of the variable diameter centerbody inlet program:N94-33509[R]. Washington, D.C.:NASA, 1991.
[15] YUSUKE M. Multi-row disk arrangement concept for spike of axisymmetric air inlet:AIAA-2004-3407[R]. Reston:AIAA, 2004.
[16] 李永洲, 李光熙, 刘晓伟, 等. 马赫数1.5~4.5的曲面轴对称变几何进气道设计[J].火箭推进, 2018, 44(4):30-35. LI Y Z, LI G X, LIU X W, et al. Design of a curved axisymmetric variable geometry inlet with Mach number from 1.5 to 4.5[J]. Journal of Rocket Propulsion, 2018, 44(4):30-35(in Chinese).
[17] 黄思源. 非传统激波封口设计在高超声速进气道中应用可行性研究[J]. 推进技术, 2015, 36(7):976-981. HUANG S Y. Feasibility of applying a non-traditional shock-on-lip design to hypersonic inlet[J]. Journal of Propulsion Technology, 2015, 36(7):976-981(in Chinese).
[18] 滕健,袁化成.一种轴对称变几何进气道设计方法[J].航空动力学报,2013,28(1):96-103. TENG J, YUAN H C. Design methodology of axisymmetric variable geometry inlet[J]. Journal of Aerospace Power, 2013, 28(1):96-103(in Chinese).
[19] 王亚岗,袁化成,郭荣伟.TBCC用轴对称进气道流量控制技术研究[J].推进技术,2013, 34(12):1606-1615. WANG Y G, YUAN H C, GUO R W. Research on mass-flow controlling technology of TBCC axisymmetric inlet[J]. Journal of Propulsion Technology, 2013, 34(12):1606-1615(in Chinese).
[20] 程代姝, 张悦, 高婉宁, 等. 结合局部次流循环的变几何轴对称进气道研究[J].推进技术,2019,40(9):2003-2011. CHENG D S, ZHANG Y, GAO W N, et al. Investigation of a variable axisymmetric inlet with local secondary flow recirculation[J]. Journal of Propulsion Technology, 2019,40(9):2003-2011(in Chinese).