电子电气工程与控制

航天器太阳圆面速度差/太阳视方向组合导航

  • 宁晓琳 ,
  • 黄玉琳 ,
  • 晁雯
展开
  • 1. 北京航空航天大学 前沿科学技术创新研究院, 北京 100083;
    2. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083

收稿日期: 2020-05-20

  修回日期: 2020-05-30

  网络出版日期: 2020-06-04

基金资助

国家自然科学基金(61722301);中央高校基本科研基金(YWF-19-BJ-J-82)

Integrated navigation of solar disk velocity difference and sun direction for spacecraft

  • NING Xiaolin ,
  • HUANG Yulin ,
  • CHAO Wen
Expand
  • 1. Research Institute for Frontier Science, Beihang University, Beijing 100083, China;
    2. School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China

Received date: 2020-05-20

  Revised date: 2020-05-30

  Online published: 2020-06-04

Supported by

National Natural Science Foundation of China (61722301); the Fundamental Research Funds for the Central Universities(YWF-19-BJ-J-82)

摘要

针对航天器,尤其是深空探测器的自主导航问题,提出了一种新的太阳圆面速度差天文量测信息,该信息利用太阳的较差自转所造成的太阳圆面各点速度不同的特性,是探测器当前位置的函数,其几何本质是一个探测器的位置圆锥。在此基础上,基于太阳圆面速度差和太阳视方向互补的特性,提出了一种太阳圆面速度差/太阳视方向组合导航新方法,将太阳圆面速度差与太阳视方向2种量测量结合起来,实现了量测量之间的优势互补,进一步提高了导航性能。以太阳探测器为例进行了仿真,仿真结果表明相比较于单独用太阳圆面速度差或太阳视方向的导航方法,基于太阳圆面速度差/太阳视方向的组合导航方法精度分别提升了10.2%和16.0%。此外,还分析了光谱仪精度、采样周期和光谱仪数量对导航性能的影响,为深空探测自主导航提供了新的理论与方法。

本文引用格式

宁晓琳 , 黄玉琳 , 晁雯 . 航天器太阳圆面速度差/太阳视方向组合导航[J]. 航空学报, 2020 , 41(9) : 324253 -324253 . DOI: 10.7527/S1000-6893.2020.24253

Abstract

For autonomous navigation of spacecraft, especially in deep space exploration, a novel type of astronomical measurement information of the solar disk velocity difference is proposed. Utilizing the characteristics of the different velocities of the solar disk caused by the solar differential rotation, this information is a function of the current position of the explorer, with its geometric essence being a position cone of the explorer. Based on this and the physical law that the velocity difference of the solar disk and the line-of-sight vector of the sun complement each other, a novel navigation method integrating the solar disk velocity difference and the sun direction is proposed. It combines the two measurements of the velocity difference of the solar disk and the sun direction to achieve mutual complementation and further improve the navigation performance. This study uses the solar explorer as an example for simulation, and the results show that the accuracy of the combined navigation method is improved by 10.2% and 16.0% respectively compared with the navigation methods of using the solar disk velocity difference or the line-of-sight vector of sun alone. In addition, the impact of the spectrometer accuracy, the sampling time, and the number of spectrometers on the navigation performance is analyzed, providing a new approach to autonomous navigation of deep space exploration.

参考文献

[1] 房建成, 宁晓琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京:国防工业出版社, 2006:1-4. FANG J C, NING X L, TIAN Y L. Principles and method of spacecraft celestial navigation[M]. Beijng:National Defense Industry Press, 2006:1-4(in Chinese).
[2] 杨博, 俞雪瑶, 苗峻. 一种利用地球敏感器的星光导航方法[J]. 宇航学报, 2016, 37(9):1089-1097. YANG B, YU X Y, MIAO J. A method of starlight navigation using the infrared horizon sensor[J]. Journal of Astronautics, 2016, 37(9):1089-1097(in Chinese).
[3] BHASKARAN S, DESAI S, DUMONT P, et al. Orbit determination performance evaluation of the Deep Space 1 autonomous navigation system[C]//Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting. Reston:AIAA, 1998.
[4] DUXBURY T C, BORN G H, JERATH N. Viewing phobos and deimos for navigating mariner 9[J]. Journal of Spacecraft & Rockets, 1972, 11(4):215-222.
[5] FRAUENHOLZ R B, BHAT R S, CHESLEY S R, et al. Deep impact navigation system performance[J]. Journal of Spacecraft & Rockets, 2008, 45(1):39-56.
[6] BURLAGA L, SITTLER E, MARIANI F, et al. Magnetic loop behind an interplanetary shock:Voyager, Helios, and IMP 8 observations[J]. Journal of Geophysical Research:Space Physics, 1981, 86(A8):6673-6684.
[7] XIONG K, WEI C L, LIU L D. Performance enhance-ment of X-ray pulsar navigation using autonomous optical sensor[J]. Acta Astronautica, 2016, 128:473-484.
[8] NING X L, GUI M Z, FANG J C, et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science & Technology, 2017, 62:36-45.
[9] LIU J, FANG J C, KANG Z W, et al. Novel algorithm for X-ray pulsar navigation against doppler effects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1):228-41.
[10] 宋佳凝, 徐国栋, 李鹏飞. 基于相位差测量的脉冲星时间相对导航方法[J]. 宇航学报, 2016, 37(11):1304-1311. SONG J N, XU G D, LI P F. Pulsar based time relative navigation method using phase difference measurement[J]. Journal of Astronautics, 2016, 37(11):1304-1311(in Chinese).
[11] NING X L, GUI M Z, FANG J C, et al. A novel differ-ential doppler measurement-aided autonomous celestial navigation method for spacecraft during approach phase[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017, 53(1):587-597.
[12] LIU J, KANG Z W, WHITE P, et al. Doppler/XNAV in-tegrated navigation system using small-area X-ray sensor[J]. IET Radar Sonar & Navigation, 2011, 5(9):1010-1017.
[13] WANG Y, ZHENG W, SUN S. X-Ray pulsar-based navigation system/Sun measurement integrated navigation method for deep space explorer[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(10):1843-1852.
[14] FRANKLIN R G, BIRX D L. A study of natural electromagnetic phenomena for space navigation[J]. Proceedings of the IRE, 1960, 48(4):532-41.
[15] GUO Y P. Method and apparatus for autonomous solar navigation:US6622970[P]. 2003-09-23.
[16] YIM J R, CRASSIDIS J L, JUNKINS J L. Autonomous orbit navigation of interplanetary spacecraft[C]//AIAA/AAS Astrodynamics Specialist Conference.Reston:AIAA, 2000.
[17] HENDERSON T A, POLLOCK T C, SINCLAIR A J, et al. Hardware development and measurements of solar Doppler shift for spacecraft orbit determination[J]. Advances in the Astronautical Sciences, 2004, 116:1-14.
[18] HOWARD R, HARVEY J. Spectroscopic determinations of solar rotation[J]. Solar Physics, 1970, 12(1):23-51.
[19] JAVARAIAH J, BERTELLO L, ULRICH R K. An interpretation of the differences in the solar differential rotation during even and odd sunspot cycles[J]. The Astrophysical Journal, 2005, 6(6):579-584.
[20] 况银丽, 方亮, 彭翔, 等. 基于多普勒非对称空间外差光谱技术的多普勒测速仿真[J]. 物理学报, 2018, 67(14):111-118. KUANG Y L, FANG L, PENG X, et al. Simulation of Doppler velocity measurement based on Doppler asymmetric space heterodyne spectroscopy[J]. Acta Physica Sinica, 2018, 67(14):111-118(in Chinese).
[21] 谢婧岚. 太阳自转随时间变化研究[D]. 云南:中国科学院云南天文台, 2017:19-21. XIE J L. Study of the temporal variation of Solar rotation[D]. Yunnan:Yunnan Observatories, Chinese Academy of Sciences, 2017:19-21(in Chinese).
[22] 李林森. 太阳较差自转130年(1855~1985)的观测和理论研究史的回顾[J]. 天文与天体物理, 2013, 1(3):45-52. LI L S. Look back on history (130 Years) of observational and theoretical research of Solar differential rotation (1855-1985)[J]. Astronomy and Astrophysics, 2013, 1(3):45-52(in Chinese).
[23] SNODGRASS H, ULRICH R. Rotation of Doppler features in the solar photosphere[J]. Astrophysical Journal, 1990, 351(1):309-316.
[24] 秦永元, 张洪钺, 汪叔华.卡尔曼滤波与组合导航原理[M]. 第3版. 西安:西北工业大学出版社, 1998:362-376. QIN Y Y, ZHANG H Y, WANG S H. Calman filter and integrated navigation[M]. 3th ed. Xi'an:Northwestern Polytechnical University Press, 1998:362-376(in Chinese).
[25] 宁晓琳, 晁雯. 一种基于太阳自转轴观测角的新型天文导航方法[J]. 深空探测学报, 2019, 6(4):328-334. NING X L, CHAO W. A novel celestial navigation method using angle relative to Solar rotation axis[J]. Journal of Deep Space Exploration, 2019, 6(4):328-334(in Chinese).
[26] WERTZ J R. Spacecraft attitude determination and control[M]. Berlin:Springer Science & Business Media 2012.
[27] 丁溯泉, 张波, 刘世勇. STK使用技巧及载人航天工程应用[M]. 北京:国防工业出版社, 2016. DING S Q, ZHANG B, LIU S Y. STK Skills and the applications of manned space engineering[M]. Beijing:National Defense Industry Press, 2016(in Chinese).
[28] YIM J R. Autonomous spacecraft orbit navigation[D]. College Station:A&M University, 2002.
文章导航

/