流体力学与飞行力学

基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制

  • 孙全兵 ,
  • 史志伟 ,
  • 耿玺 ,
  • 王力爽 ,
  • 张维源
展开
  • 南京航空航天大学 航空学院, 南京 210016

收稿日期: 2020-04-13

  修回日期: 2020-05-21

  网络出版日期: 2020-06-04

基金资助

航空动力基金(6141B09050389)

Attitude control of flying wing aircraft without control surfaces based on active flow control

  • SUN Quanbing ,
  • SHI Zhiwei ,
  • GENG Xi ,
  • WANG Lishuang ,
  • ZHANG Weiyuan
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-04-13

  Revised date: 2020-05-21

  Online published: 2020-06-04

Supported by

Aeronautics Power Foundation (6141B09050389)

摘要

飞翼布局飞行器因其升阻比高、隐身性能好等诸多优势得到越来越广泛的应用,但是操纵舵面偏转会增加飞行器的雷达散射截面积。提出了采用射流环量控制和反向射流两种主动流动控制技术实现飞行器的无舵面飞行姿态控制。利用风洞测力试验对射流环量控制和反向射流的"舵效"进行了分析,结果表明环量控制技术能产生规律变化且可控的滚转和俯仰力矩、反向射流产生的偏航力矩随控制信号规律变化。飞行试验记录了飞行器姿态随射流激励器控制信号的变化规律,飞行数据表明俯仰环量控制激励器能有效地控制无人机的俯仰运动;无人机的横航向操纵存在耦合,但滚转环量控制激励器和反向射流能控制无人机的滚转和偏航运动。

本文引用格式

孙全兵 , 史志伟 , 耿玺 , 王力爽 , 张维源 . 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020 , 41(12) : 124080 -124080 . DOI: 10.7527/S1000-6893.2020.24080

Abstract

Flying wing aircraft has been increasingly used because of its high lift-drag ratio and superior steal performance. However, the deflection of the control surface increases the radar scattering area of the aircraft. In this work, a control method adopting jet circulation control and reverse jet control is proposed to control the flight attitudes for a flapless flying wing configuration. The wind tunnel force measurements were conducted to analyze the effectors of these two active flow control methods. Results show that jet circulation control can provide the regular and controllable rolling moment and pitching moment for the model, while the reserve jet control can provide the regular and controllable yawing moment. A flight test was conducted to investigate the attitude variation with the control signals of the active flow control actuator. The flight data indicate that the jet circulation control can control the pitching movement of the UAV. Despite the coupling of the lateral and directional control, the rolling movement and yawing movement can be controlled with jet circulation control and reserve jet control respectively.

参考文献

[1] ZOU Y, YIN Y, SONG J. Flight control of a flying-wing uav based on active disturbance rejection control[C]//IEEE 3rd International Conference on Control Science and Systems Engineering, 2017.
[2] LI J, CHEN X, LI Z. The attitude decoupling control of the flying wing UAV[C]//IEEE Chinese Guidance, Navigation and Control Conference, 2016.
[3] 王磊, 王立新, 贾重任. 多操作面飞翼布局作战飞机的控制分配方法[J]. 航空学报, 2011, 32(4):571-579. WANG L, WANG L X, JIA Z R. Control allocation method for combat flying wing with multiple control surface[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4):571-579(in Chinese).
[4] DAVIDSON I M. Aerofoil boundary layer control systems:US3062483 A[P]. 1962.
[5] ENGLAR R J. Experimental investigation of the high velocity Coanda wall jet applied to bluff trailing edge circulation control airfoils[R]. Washington,D.C.:David W. Taylor Naval Ship Research and Development Center, 1975.
[6] ENGLAR R J, HEMMERLY R A, TAYLOR D. Design of the circulation control wing STOL demonstrator aircraft[J]. Journal of Aircraft, 1981, 18(1):51-58.
[7] ABRAMSON J, ROGERS R E.High speed characteristics of circulation control airfoils[C]//AIAA 21th Aerospace Science Meeting. Reston:AIAA, 1983.
[8] HOLZ R G, HASSAN A A, REED H L. Numerical model for circulation control flows[J]. AIAA Journal, 1994, 32(4):701-707.
[9] FIELDING J P, LAWSON C P, PIRES R, et al. Development of the DEMON technology demonstrator UAV[C]//27th ICAS Conference, 2010.
[10] YARF-ABBASI A, FIELDING J P. Design integration of the eclipse and Demon demonstrator UAVs[C]//7th AIAA Aviation Technology, Integration and Operations Conference. Reston:AIAA, 2007.
[11] CHEN K, SHI Z, ZHU J, et al. Roll aerodynamic characteristic study of an unmanned aerial vehicle based on circulation control technology[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(3):871-882.
[12] SHI Z, ZHU J, DAI X, et al. Aerodynamic characteristic and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1):04018134.
[13] BOWLUS J A, MULTHOPP D. Challenges and opportunities in tailless aircraft stability and control:AIAA-1997-3830[R]. Reston:AIAA, 1997.
[14] DORSEIT K M, MEIL D R. Innovative control effectors(ICE):WL-TR-96-3043[R]. 1996.
[15] GILLARD W J. Innovative control effec-tors(configuration 101)dynamic wind tunnel test report rotary balance and force oscillation tests:AFRL-VA-WP-TP-1998-3043[R]. 1998.
[16] STENFELT G, RINGELTZ U. Lateral stability and control of a tailless aircraft configuration[J]. Journal of Aircraft, 2009,46(6):2161-2163.
[17] 李中剑,马东立. 飞翼布局阻力类偏航操纵装置操纵特性分析[J]. 北京航空航天大学学报, 2014, 40(5):695-700. LI Z J, MA D L. Control characteristic analysis of drag yawing control devices of flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):659-700(in Chinese).
[18] 马超,李林, 王立新. 大展弦比飞翼布局飞机新型操纵面设计[J]. 北京航空航天大学学报, 2007, 33(1):149-152. MA C, LI L, WANG L X. Design of innovative control surfaces of flying wing aircrafts with large ratio aspect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(1):149-152.
[19] 王旭,于冲, 苏新兵, 等. 开裂式阻力方向舵在变前掠翼布局中的操作性能研究[J]. 航空学报, 2013, 34(4):741-749. WANG X, YU C, SU X B, et al. Study of control characteristic for split rudder in variable forward swept wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):741-749(in Chinese).
[20] 张彬乾, 马怡, 禇胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 34(11):2435-2442. ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surface for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2435-2442(in Chinese).
[21] QU X, ZHANG W, SHI J, et al. A novel yaw control method for flying-wing aircraft in low speed regime[J]. Aerospace Science and Technology, 2017, 69:636-649.
[22] ZHU J, SHI Z, SUN Q, et al. Yaw control of flying-wing unmanned aerial vehicle based on reverse jet control[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, (2020-01-07)[2020-04-07]. https://doi.org/10.1177/0954410019899513.
[23] 王铁成. 空气动力学实验技术[M]. 北京:航空工业出版社, 1995:174-188. WANG T C. Aerodynamic experimental techniques[M]. Beijing:Aviation Industry Press, 1995:174-188(in Chinese).
[24] 恽起麟. 对风洞实验数据精度的要求[J]. 气动实验测量与控制, 1994(1):66-72. YUN Q L. Requirement of accuracy for wind tunnel testing data[J]. Aerodynamic Experiment and Measurement &Control, 1994(1):66-72(in Chinese).
[25] JOE C, TREVOR B. CFD predictions of control effectiveness for a generic highly swept UCAV configuration[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014
文章导航

/